結果
問題 | No.2661 Sweep Cards (Hard) |
ユーザー | ecottea |
提出日時 | 2024-03-04 18:25:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 13,004 bytes |
コンパイル時間 | 4,705 ms |
コンパイル使用メモリ | 288,496 KB |
実行使用メモリ | 13,632 KB |
最終ジャッジ日時 | 2024-09-29 17:30:23 |
合計ジャッジ時間 | 11,103 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
11,556 KB |
testcase_01 | AC | 1 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 1 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,820 KB |
testcase_14 | AC | 2 ms
6,816 KB |
testcase_15 | AC | 27 ms
6,820 KB |
testcase_16 | AC | 14 ms
6,816 KB |
testcase_17 | TLE | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【階乗など(法が大きな素数)】 /* * Factorial_mint(int N) : O(n) * N まで計算可能として初期化する. * * mint fact(int n) : O(1) * n! を返す. * * mint fact_inv(int n) : O(1) * 1/n! を返す(n が負なら 0 を返す) * * mint inv(int n) : O(1) * 1/n を返す. * * mint perm(int n, int r) : O(1) * 順列の数 nPr を返す. * * mint bin(int n, int r) : O(1) * 二項係数 nCr を返す. * * mint mul(vi rs) : O(|rs|) * 多項係数 nC[rs] を返す.(n = Σrs) * * mint hom(int n, int r) : O(1) * 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) */ class Factorial_mint { int n_max; // 階乗と階乗の逆数の値を保持するテーブル vm fac, fac_inv; public: // n! までの階乗とその逆数を前計算しておく.O(n) Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b fac[0] = 1; repi(i, 1, n) fac[i] = fac[i - 1] * i; fac_inv[n] = fac[n].inv(); repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1); } Factorial_mint() : n_max(0) {} // ダミー // n! を返す. mint fact(int n) const { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b Assert(0 <= n && n <= n_max); return fac[n]; } // 1/n! を返す(n が負なら 0 を返す) mint fact_inv(int n) const { // verify : https://atcoder.jp/contests/abc289/tasks/abc289_h Assert(n <= n_max); if (n < 0) return 0; return fac_inv[n]; } // 1/n を返す. mint inv(int n) const { // verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d Assert(0 < n && n <= n_max); return fac[n - 1] * fac_inv[n]; } // 順列の数 nPr を返す. mint perm(int n, int r) const { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[n - r]; } // 二項係数 nCr を返す. mint bin(int n, int r) const { // verify : https://atcoder.jp/contests/abc034/tasks/abc034_c Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[r] * fac_inv[n - r]; } // 多項係数 nC[rs] を返す. mint mul(const vi& rs) const { // verify : https://yukicoder.me/problems/no/2141 if (*min_element(all(rs)) < 0) return 0; int n = accumulate(all(rs), 0); Assert(n <= n_max); mint res = fac[n]; repe(r, rs) res *= fac_inv[r]; return res; } // 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする) mint hom(int n, int r) { // verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2 if (n == 0) return (int)(r == 0); Assert(n + r - 1 <= n_max); if (r < 0 || n - 1 < 0) return 0; return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1]; } }; //【幅優先探索(動的)】O(n + m)(遅い) /* * st から到達可能な頂点 t のリストを返す.nxt(s) は s の次に訪れることのできる頂点のリストを返す. * 探索は lim ms だけ続ける. */ template <class T> set<T> get_reachable_set(T st, const function<vector<T>(T)>& nxt, int lim = (int)1e9) { // verify : https://atcoder.jp/contests/agc045/tasks/agc045_c auto start = chrono::system_clock::now(); set<T> vs; // st から到達可能な頂点のリスト vs.insert(st); queue<T> que; // 次に探索する頂点を入れておくキュー que.push(st); while (!que.empty()) { // 未探索の頂点 s を得る. auto s = que.front(); que.pop(); repe(t, nxt(s)) { // t が発見済みの頂点なら何もしない. if (vs.count(t)) continue; // t に到達したことを記録する. vs.insert(t); // 未探索の頂点として t を追加する. que.push(t); } auto now = chrono::system_clock::now(); auto msec = chrono::duration_cast<chrono::milliseconds>(now - start).count(); if (msec >= lim) break; } return vs; /* nxt の定義の雛形 using T = ll; function<vector<T>(T)> nxt = [&](T s) { vector<T> res; return res; }; */ } // 入力が N, K, M のみと少ないので,まずは愚直を書いてみる. void zikken() { using T = vector<string>; function<vector<T>(T)> nxt = [&](T s) { vector<T> res; int n = sz(s); rep(i, n - 2) { { vector<string> t; rep(j, i) t.push_back(s[j]); t.push_back(s[i] + s[i + 1] + s[i + 2]); repi(j, i + 3, n - 1) t.push_back(s[j]); res.push_back(t); } { vector<string> t; rep(j, i) t.push_back(s[j]); t.push_back(s[i + 2] + s[i + 1] + s[i]); repi(j, i + 3, n - 1) t.push_back(s[j]); res.push_back(t); } } return res; }; repi(n, 1, 20) { vector<string> ini(n); rep(i, n) ini[i] += 'a' + i; auto res = get_reachable_set(ini, nxt); vi cnt(n + 1); repe(s, res) cnt[sz(s)]++; dump_list(cnt); } exit(0); } /* K = 3: {0, 1} {0, 0, 1} {0, 2, 0, 1} {0, 0, 4, 0, 1} {0, 8, 0, 6, 0, 1} {0, 0, 20, 0, 8, 0, 1} {0, 42, 0, 36, 0, 10, 0, 1} {0, 0, 116, 0, 56, 0, 12, 0, 1} {0, 252, 0, 230, 0, 80, 0, 14, 0, 1} {0, 0, 736, 0, 392, 0, 108, 0, 16, 0, 1} {0, 1636, 0, 1548, 0, 610, 0, 140, 0, 18, 0, 1} {0, 0, 4952, 0, 2800, 0, 892, 0, 176, 0, 20, 0, 1} {0, 11188, 0, 10836, 0, 4620, 0, 1246, 0, 216, 0, 22, 0, 1} {0, 0, 34716, 0, 20432, 0, 7152, 0, 1680, 0, 260, 0, 24, 0, 1} {0, 79386, 0, 78152, 0, 35172, 0, 10556, 0, 2202, 0, 308, 0, 26, 0, 1} {0, 0, 250868, 0, 151944, 0, 56808, 0, 15008, 0, 2820, 0, 360, 0, 28, 0, 1} {0, 579020, 0, 576918, 0, 270060, 0, 87444, 0, 20700, 0, 3542, 0, 416, 0, 30, 0, 1} {0, 0, 1855520, 0, 1148296, 0, 450692, 0, 129568, 0, 27840, 0, 4376, 0, 476, 0, 32, 0, 1} {0, 4314300, 0, 4338540, 0, 2092530, 0, 717024, 0, 186084, 0, 36652, 0, 5330, 0, 540, 0, 34, 0, 1} OEIS で検索しても見つからない. しょうがないのでまずは F 問題を真面目に考えよう. */ /* * F 問題を真面目に考えた後 * * 1 つの連結成分で,最後に右向きに重ねた場合の母関数を g(z) とすると, * z + (2 g - z) g(z)^(m-1) = g(z) * なる関数方程式が得られる.これを z について解くと * z = (g(z) - 2 g(z)^m) / (1 - g(z)^(m-1)) * となるので,g(z) の逆関数は * h(z) = (z - 2 z^m) / (1 - z^(m-1)) * である.求めたいものは * [z^n] (2 g(z) - z)^k * = Σj∈[0..k] bin(k, j) 2^j (-1)^(k-j) [z^n] g(z)^j z^(k-j) * = Σj∈[0..k] bin(k, j) 2^j (-1)^(k-j) [z^(n-k+j)] g(z)^j * である.ラグランジュの反転公式より * [z^n] g(z)^k * = k/n [z^(n-k)](z / h(z))^n * = k/n [z^(n-k)](z (1 - z^(m-1)) / (z - 2 z^m))^n * = k/n [z^(n-k)]((1 - z^(m-1)) / (1 - 2 z^(m-1)))^n * = k/n [z^(n-k)]((1 - z^(m-1))^n (1 - 2 z^(m-1)))^(-n) * = k/n [z^((n-k)/(m-1))]((1 - z)^n (1 - 2 z))^(-n) * となる. * L = (n-k)/(m-1) * とおくと,二項定理および負の二項定理より * [z^n] g(z)^k * = k/n Σi∈[0..L] (-1)^(L-i) bin(n, L-i) 2^i bin(i+n-1, n-1) * を得る.ひとまずここまで合ってるかチェックしておく. */ vm TLE(int n, int m, vi ks) { Factorial_mint fm(2 * n + 10); vm pow2(2 * n + 11); pow2[0] = 1; rep(i, 2 * n + 10) pow2[i + 1] = pow2[i] * 2; vm res; repe(k, ks) { if (k == n) { res.push_back(1); continue; } if ((n - k) % (m - 1) != 0) { res.push_back(0); continue; } int L = (n - k) / (m - 1); mint val = 0; repi(j, 0, k) { mint val2 = 0; repi(i, 0, L) { val2 += ((L - i) & 1 ? -1 : 1) * fm.bin(n - k + j, L - i) * pow2[i] * fm.bin(n - k + j + i - 1, i); } val += fm.bin(k, j) * pow2[j] * ((k - j) & 1 ? -1 : 1) * j * fm.inv(n - k + j) * val2; } res.push_back(val); } return res; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); // zikken(); int n, m, q; cin >> n >> m >> q; vi ks(q); cin >> ks; auto res = TLE(n, m, ks); rep(j, q) cout << res[j] << endl; }