結果
| 問題 |
No.109 N! mod M
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-03-07 20:37:27 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,984 bytes |
| コンパイル時間 | 239 ms |
| コンパイル使用メモリ | 82,592 KB |
| 実行使用メモリ | 65,088 KB |
| 最終ジャッジ日時 | 2024-09-29 18:41:52 |
| 合計ジャッジ時間 | 4,618 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 5 |
ソースコード
import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 7
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
def inv_gcd(a, b):
a = a % b
if a == 0:
return b, 0
s = b
t = a
m0 = 0
m1 = 1
while t:
u = s // t
s -= t * u
m0 -= m1 * u
s, t = t, s
m0, m1 = m1, m0
if m0 < 0:
m0 += b // s
return s, m0
def inv_mod(x, m):
assert 1 <= m
z = inv_gcd(x, m)
assert z[0] == 1
return z[1]
def crt(r,m):
# r: 余りのlist
# m: modのlist
assert len(r) == len(m)
n = len(r)
r0 = 0
m0 = 1
for i in range(n):
assert 1 <= m[i]
r1 = r[i] % m[i]
m1 = m[i]
if m0 < m1:
r0, r1 = r1, r0
m0, m1 = m1, m0
if m0 % m1 == 0:
if r0 % m1 != r1:
return 0, 0
continue
g, im = inv_gcd(m0, m1)
u1 = m1 // g
if (r1 - r0) % g:
return 0, 0
x = (r1-r0) // g % u1 * im % u1
r0 += x * m0
m0 *= u1
if r0 < 0:
r0 += m0
return r0,m0
# Nの素因数分解を辞書で返す(単体)
def prime_fact(n):
root = int(n**0.5) + 1
prime_dict = {}
for i in range(2, root):
cnt = 0
while n % i == 0:
cnt += 1
n = n // i
if cnt:
prime_dict[i] = cnt
if n != 1:
prime_dict[n] = 1
return prime_dict
# 約数列挙(単体)
def divisors(x):
res = set()
for i in range(1, int(x**0.5) + 2):
if x % i == 0:
res.add(i)
res.add(x//i)
return res
def main():
T = NI()
for _ in range(T):
N, M = NMI()
if N >= M:
print(0)
continue
if M <= 10**5 or N <= 10**5:
ans = 1
for i in range(1, N+1):
ans = ans * i % M
print(ans)
else:
P = prime_fact(M)
r = []
m = []
for p, k in P.items():
mod = p**k
m.append(mod)
if N >= mod or k >= 2:
r.append(0)
else:
# (p-1)!=-1
# p-2, ..., (N+1), N! = ?
x = p-1
for i in range(p-2, N, -1):
x = x * pow(i, p-2, p) % p
r.append(x)
r0, m0 = crt(r, m)
print(r0)
if __name__ == "__main__":
main()