結果
問題 | No.109 N! mod M |
ユーザー |
|
提出日時 | 2024-03-07 20:42:41 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,997 bytes |
コンパイル時間 | 142 ms |
コンパイル使用メモリ | 82,520 KB |
実行使用メモリ | 63,872 KB |
最終ジャッジ日時 | 2024-09-29 18:41:58 |
合計ジャッジ時間 | 4,305 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 8 WA * 1 |
ソースコード
import sysimport mathimport bisectfrom heapq import heapify, heappop, heappushfrom collections import deque, defaultdict, Counterfrom functools import lru_cachefrom itertools import accumulate, combinations, permutations, productsys.setrecursionlimit(1000000)MOD = 10 ** 9 + 7MOD99 = 998244353input = lambda: sys.stdin.readline().strip()NI = lambda: int(input())NMI = lambda: map(int, input().split())NLI = lambda: list(NMI())SI = lambda: input()SMI = lambda: input().split()SLI = lambda: list(SMI())EI = lambda m: [NLI() for _ in range(m)]def inv_gcd(a, b):a = a % bif a == 0:return b, 0s = bt = am0 = 0m1 = 1while t:u = s // ts -= t * um0 -= m1 * us, t = t, sm0, m1 = m1, m0if m0 < 0:m0 += b // sreturn s, m0def inv_mod(x, m):assert 1 <= mz = inv_gcd(x, m)assert z[0] == 1return z[1]def crt(r,m):# r: 余りのlist# m: modのlistassert len(r) == len(m)n = len(r)r0 = 0m0 = 1for i in range(n):assert 1 <= m[i]r1 = r[i] % m[i]m1 = m[i]if m0 < m1:r0, r1 = r1, r0m0, m1 = m1, m0if m0 % m1 == 0:if r0 % m1 != r1:return 0, 0continueg, im = inv_gcd(m0, m1)u1 = m1 // gif (r1 - r0) % g:return 0, 0x = (r1-r0) // g % u1 * im % u1r0 += x * m0m0 *= u1if r0 < 0:r0 += m0return r0,m0# Nの素因数分解を辞書で返す(単体)def prime_fact(n):root = int(n**0.5) + 1prime_dict = {}for i in range(2, root):cnt = 0while n % i == 0:cnt += 1n = n // iif cnt:prime_dict[i] = cntif n != 1:prime_dict[n] = 1return prime_dict# 約数列挙(単体)def divisors(x):res = set()for i in range(1, int(x**0.5) + 2):if x % i == 0:res.add(i)res.add(x//i)return resdef main():T = NI()for _ in range(T):N, M = NMI()if N >= M:print(0)continueif M <= 10**5 or N <= 10**5:ans = 1for i in range(1, N+1):ans = ans * i % Mprint(ans)else:P = prime_fact(M)r = []m = []for p, k in P.items():mod = p**km.append(mod)if N >= mod or k >= 2:r.append(0)else:# (p-1)!=-1# p-1, p-2, ..., N+1で割っていくx = p-1for i in range(p-1, N, -1):x = x * pow(i, p-2, p) % pr.append(x)r0, m0 = crt(r, m)print(r0)if __name__ == "__main__":main()