結果
| 問題 |
No.114 遠い未来
|
| ユーザー |
|
| 提出日時 | 2024-03-08 12:14:56 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,672 bytes |
| コンパイル時間 | 422 ms |
| コンパイル使用メモリ | 82,688 KB |
| 実行使用メモリ | 103,552 KB |
| 最終ジャッジ日時 | 2024-09-29 18:46:39 |
| 合計ジャッジ時間 | 12,719 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | WA * 1 TLE * 2 -- * 22 |
ソースコード
import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 7
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
def main():
N, M, T = NMI()
ABC = EI(M)
ABC = [[x-1, y-1, z] for x, y, z in ABC]
V = [NI() for _ in range(T)]
V = [x-1 for x in V]
INF = 10 ** 15
if T <= 16:
# 最小シュタイナー木
# ワーシャルフロイド
D = [[INF]*N for _ in range(N)]
for i in range(N):
D[i][i] = 0
for a, b, c in ABC:
D[a][b] = c
D[b][a] = c
for k in range(N):
for i in range(N):
for j in range(N):
D[i][j] = min(D[i][j], D[i][k] + D[k][j])
# dp[i][S]: iを端点に持ち、Vの部分集合S(T-bit)を含むシュタイナー木の重み
dp = [[INF] * (1<<T) for _ in range(N)]
# 各vについて、端点がiのときの初期値
for vi in range(T):
for i in range(N):
dp[i][1<<vi] = D[i][V[vi]]
dp[V[vi]][1<<vi] = 0
for i in range(N):
dp[i][0] = 0
def gen_subset(S):
s = (S-1) & S
while s > 0:
yield s
s = (s-1) & S
# O(3^T)の部分集合DP
# トータルでO(N*3^T + N^2*2^T)
for S in range(1, 1<<T):
sub = list(gen_subset(S))
for i in range(N):
for E in sub:
dp[i][S] = min(dp[i][S], dp[i][S-E] + dp[i][E])
for j in range(N):
dp[i][S] = min(dp[i][S], dp[j][S] + D[i][j])
ans = INF
for i in range(N):
ans = min(ans, dp[i][-1])
print(ans)
else:
# N-T <= 20
# 使わない頂点の集合を全探索してMST
class UnionFind:
def __init__(self, n):
# 親要素のノード番号を格納 xが根のとき-(サイズ)を格納
self.par = [-1 for i in range(n)]
self.n = n
self.roots = set(range(n))
self.group_num = n
def find(self, x):
# 根ならその番号を返す
if self.par[x] < 0:
return x
else:
# 親の親は親
self.par[x] = self.find(self.par[x])
return self.par[x]
def is_same(self, x, y):
# 根が同じならTrue
return self.find(x) == self.find(y)
def unite(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y: return
# 木のサイズを比較し、小さいほうから大きいほうへつなぐ
if self.par[x] > self.par[y]:
x, y = y, x
self.group_num -= 1
self.roots.discard(y)
assert self.group_num == len(self.roots)
self.par[x] += self.par[y]
self.par[y] = x
def size(self, x):
return -self.par[self.find(x)]
def get_roots(self):
return self.roots
def group_count(self):
return len(self.roots)
def MST(N, edges, S):
"""
要UnionFind
N頂点のうち、Sに含まれる点のみの最小全域木の長さ
edges = [[u, v, cost], ....] (0-index)
"""
uf = UnionFind(N)
edges.sort(key=lambda x: x[-1])
res = 0
for a, b, c in edges:
if a not in S or b not in S:
continue
if uf.is_same(a, b):
continue
else:
res += c
uf.unite(a, b)
return res
Vbar = [i for i in range(N) if i not in V]
Vbn = len(Vbar)
ans = INF
for case in range(1<<Vbn):
S = set(V) | set(Vbar[i] for i in range(Vbn) if (case >> i) & 1)
res = MST(N, ABC, S)
ans = min(ans, res)
print(ans)
if __name__ == "__main__":
main()