結果
| 問題 |
No.2665 Minimize Inversions of Deque
|
| コンテスト | |
| ユーザー |
zawakasu
|
| 提出日時 | 2024-03-08 21:27:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 52 ms / 2,000 ms |
| コード長 | 5,826 bytes |
| コンパイル時間 | 1,985 ms |
| コンパイル使用メモリ | 203,156 KB |
| 最終ジャッジ日時 | 2025-02-20 02:09:31 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 40 |
ソースコード
#include <bits/stdc++.h>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
namespace zawa {
void SetFastIO() {
std::cin.tie(nullptr)->sync_with_stdio(false);
}
void SetPrecision(u32 dig) {
std::cout << std::fixed << std::setprecision(dig);
}
} // namespace zawa
#include <type_traits>
namespace zawa {
template <class Group>
class FenwickTree {
private:
using Value = typename Group::Element;
usize n_;
u32 bitWidth_;
std::vector<Value> a_, dat_;
constexpr i32 lsb(i32 x) const noexcept {
return x & -x;
}
// a[i] <- a[i] + v
void addDat(i32 i, const Value& v) {
assert(0 <= i and i < static_cast<i32>(n_));
for ( i++ ; i < static_cast<i32>(dat_.size()) ; i += lsb(i)) {
dat_[i] = Group::operation(dat_[i], v);
}
}
// return a[0] + a[1] + .. + a[i - 1]
Value product(i32 i) const {
assert(0 <= i and i <= static_cast<i32>(n_));
Value res{ Group::identity() };
for ( ; i > 0 ; i -= lsb(i)) {
res = Group::operation(res, dat_[i]);
}
return res;
}
public:
FenwickTree() : n_{}, bitWidth_{}, a_{}, dat_{} {}
FenwickTree(usize n) : n_{ n }, bitWidth_{ std::__lg(static_cast<u32>(n)) + 1 }, a_(n), dat_(n + 1, Group::identity()) {
dat_.shrink_to_fit();
}
FenwickTree(const std::vector<Value>& a) : n_{ a.size() }, bitWidth_{ std::__lg(static_cast<u32>(a.size())) + 1 }, a_(a), dat_(a.size() + 1, Group::identity()) {
dat_.shrink_to_fit();
for (i32 i{} ; i < static_cast<i32>(n_) ; i++) {
addDat(i, a[i]);
}
}
// return a[i]
const Value& get(usize i) const noexcept {
assert(i < n_);
return a_[i];
}
// return a[i]
const Value& operator[](usize i) const noexcept {
assert(i < n_);
return a_[i];
}
usize size() const noexcept {
return n_;
}
// a[i] <- a[i] + v
void operation(usize i, const Value& v) {
assert(i < n_);
addDat(i, v);
a_[i] = Group::operation(a_[i], v);
}
// a[i] <- v
void set(usize i, const Value& v) {
assert(i < n_);
addDat(i, Group::operation(Group::inverse(a_[i]), v));
a_[i] = v;
}
// return a[0] + a[1] + ... + a[r - 1]
Value prefixProduct(usize r) const {
assert(r <= n_);
return product(r);
}
// return a[l] + a[l + 1] ... + a[r - 1]
Value product(usize l, usize r) const {
assert(l <= r and r <= n_);
return Group::operation(Group::inverse(product(l)), product(r));
}
template <class Function>
u32 maxRight(usize l, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(Value)>>, "maxRight's argument f must be function bool(T)");
assert(l < n_);
Value sum{ Group::inverse(product(l)) };
u32 r{};
for (u32 bit{ bitWidth_ } ; bit ; ) {
bit--;
u32 nxt{ r | (1u << bit) };
if (nxt < dat_.size() and f(Group::operation(sum, dat_[nxt]))) {
sum = Group::operation(sum, dat_[nxt]);
r = std::move(nxt);
}
}
assert(l <= r);
return r;
}
template <class Function>
u32 minLeft(usize r, const Function& f) const {
static_assert(std::is_convertible_v<decltype(f), std::function<bool(Value)>>, "minLeft's argument f must be function bool(T)");
assert(r <= n_);
Value sum{ product(r) };
u32 l{};
for (u32 bit{ bitWidth_ } ; bit ; ) {
bit--;
u32 nxt{ l | (1u << bit) };
if (nxt <= r and not f(Group::operation(Group::inverse(dat_[nxt]), sum))) {
sum = Group::operation(Group::inverse(dat_[nxt]), sum);
l = std::move(nxt);
}
}
assert(l <= r);
return l;
}
// debug print
friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) {
for (u32 i{} ; i <= ft.size() ; i++) {
os << ft.prefixProduct(i) << (i == ft.size() ? "" : " ");
}
return os;
}
};
} // namespace zawa
namespace zawa {
template <class T>
class AdditiveGroup {
public:
using Element = T;
static constexpr T identity() noexcept {
return T{};
}
static constexpr T operation(const T& l, const T& r) noexcept {
return l + r;
}
static constexpr T inverse(const T& v) noexcept {
return -v;
}
};
} // namespace zawa
using namespace zawa;
void solve() {
int n; std::cin >> n;
FenwickTree<AdditiveGroup<int>> fen(n);
std::deque<int> ans;
long long inv{};
for (int i{} ; i < n ; i++) {
int a; std::cin >> a;
a--;
int front{fen.prefixProduct(a)};
int back{fen.product(a + 1, n)};
if (front < back) {
ans.push_front(a + 1);
inv += front;
}
else if (front > back) {
ans.push_back(a + 1);
inv += back;
}
else if (ans.size() and ans[0] > a + 1) {
ans.push_front(a + 1);
inv += front;
}
else {
ans.push_back(a + 1);
inv += back;
}
fen.operation(a, 1);
}
std::cout << inv << '\n';
for (int i{} ; i < n ; i++) {
std::cout << ans[i] << (i + 1 == n ? '\n' : ' ');
}
}
int main() {
SetFastIO();
int t; std::cin >> t;
for (int _{} ; _ < t ; _++) {
solve();
}
}
zawakasu