結果
| 問題 |
No.2665 Minimize Inversions of Deque
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-03-08 21:58:52 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 37 ms / 2,000 ms |
| コード長 | 4,310 bytes |
| コンパイル時間 | 3,223 ms |
| コンパイル使用メモリ | 263,272 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-09-29 19:38:22 |
| 合計ジャッジ時間 | 6,553 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 40 |
ソースコード
// An AC a day keeps the doctor away.
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
/*{{{*/
#define all(x) begin(x), end(x)
#ifdef CKISEKI
#include <experimental/iterator>
#define safe cerr<<__PRETTY_FUNCTION__<<" line "<<__LINE__<<" safe\n"
#define debug(a...) debug_(#a, a)
#define orange(a...) orange_(#a, a)
void debug_(auto s, auto ...a) {
cerr << "\e[1;32m(" << s << ") = (";
int f = 0;
(..., (cerr << (f++ ? ", " : "") << a));
cerr << ")\e[0m\n";
}
void orange_(auto s, auto L, auto R) {
cerr << "\e[1;33m[ " << s << " ] = [ ";
using namespace experimental;
copy(L, R, make_ostream_joiner(cerr, ", "));
cerr << " ]\e[0m\n";
}
#else
#define safe ((void)0)
#define debug(...) safe
#define orange(...) safe
#endif
template <typename T, T MOD> class Modular {
public:
constexpr Modular() : v() {}
template <typename U> Modular(const U &u) { v = (0 <= u && u < MOD ? u : (u%MOD+MOD)%MOD); }
template <typename U> explicit operator U() const { return U(v); }
T operator()() const { return v; }
#define REFOP(type, expr...) Modular &operator type (const Modular &rhs) { return expr, *this; }
REFOP(+=, v += rhs.v - MOD, v += MOD & (v >> width)) ; REFOP(-=, v -= rhs.v, v += MOD & (v >> width))
// fits for MOD^2 <= 9e18
REFOP(*=, v = static_cast<T>(1LL * v * rhs.v % MOD)) ; REFOP(/=, *this *= inverse(rhs.v))
#define VALOP(op) friend Modular operator op (Modular a, const Modular &b) { return a op##= b; }
VALOP(+) ; VALOP(-) ; VALOP(*) ; VALOP(/)
Modular operator-() const { return 0 - *this; }
friend bool operator == (const Modular &lhs, const Modular &rhs) { return lhs.v == rhs.v; }
friend bool operator != (const Modular &lhs, const Modular &rhs) { return lhs.v != rhs.v; }
friend std::istream & operator>>(std::istream &I, Modular &m) { T x; I >> x, m = x; return I; }
friend std::ostream & operator<<(std::ostream &O, const Modular &m) { return O << m.v; }
private:
constexpr static int width = sizeof(T) * 8 - 1;
T v;
static T inverse(T a) {
// copy from tourist's template
T u = 0, v = 1, m = MOD;
while (a != 0) {
T t = m / a;
m -= t * a; std::swap(a, m);
u -= t * v; std::swap(u, v);
}
assert(m == 1);
return u;
}
};
using lld = int64_t;
using llf = long double;
template <typename T> using max_heap = std::priority_queue<T,vector<T>,less<T> >;
template <typename T> using min_heap = std::priority_queue<T,vector<T>,greater<T> >;
template <typename V, typename T> int get_pos(const V &v, T x) { return lower_bound(all(v),x) - begin(v); }
template <typename V> void sort_uni(V &v) { sort(all(v)), v.erase(unique(all(v)),end(v)); }
template <typename T> bool chmin(T &x, const T &v) { return v < x ? (x=v, true) : false; }
template <typename T> bool chmax(T &x, const T &v) { return x < v ? (x=v, true) : false; }
constexpr inline lld cdiv(lld x, lld m) { return x/m + (x%m ? (x<0) ^ (m>0) : 0); } // ceiling divide
constexpr inline lld modpow(lld e,lld p,lld m) { lld r=1; for(e%=m;p;p>>=1,e=e*e%m) if(p&1) r=r*e%m; return r; }/*}}}*/
constexpr llf eps = 1e-9;
constexpr lld maxn = 200025, INF = 1e18, mod = 998244353, K = 14699, inf = 1e9;
using Mint = Modular<int, mod>;
Mint modpow(Mint e, uint64_t p) { Mint r = 1; while (p) (p&1) && (r *= e), e *= e, p >>= 1; return r; } // 0^0 = 1
const auto dummy = [] { return cin.tie(nullptr)->sync_with_stdio(false); }();
struct Fenwick {
vector<int> b;
Fenwick(int n) : b(n + 1) {}
void add(int p, int v = 1) {
for (++p; p < ssize(b); p += p & -p)
b[p] += v;
}
int query(int p) {
int r = 0;
for (++p; p > 0; p -= p & -p)
r += b[p];
return r;
}
};
void solve() {
int N;
cin >> N;
vector<int> p(N);
for (int i = 0; i < N; i++)
cin >> p[i];
deque<int> dq;
lld ans = 0;
Fenwick fwt(N + 1);
for (int i = 0; i < N; i++) {
int z = fwt.query(p[i]);
ans += min(z, i - z);
if (z > i - z || (!dq.empty() && z == i - z && p[i] > dq.front())) {
dq.push_back(p[i]);
} else {
dq.push_front(p[i]);
}
fwt.add(p[i]);
}
cout << ans << '\n';
for (int i = 0; i < N; i++)
cout << dq[i] << (i+1==N ? '\n' : ' ');
}
signed main() {
int T;
cin >> T;
while (T--)
solve();
}