結果
問題 | No.2668 Trees on Graph Paper |
ユーザー | 👑 tute7627 |
提出日時 | 2024-03-08 22:21:53 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 25,026 bytes |
コンパイル時間 | 2,493 ms |
コンパイル使用メモリ | 222,132 KB |
実行使用メモリ | 550,148 KB |
最終ジャッジ日時 | 2024-09-29 19:52:33 |
合計ジャッジ時間 | 17,967 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 117 ms
50,888 KB |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,816 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,824 KB |
testcase_14 | AC | 821 ms
330,820 KB |
testcase_15 | AC | 1,382 ms
503,104 KB |
testcase_16 | AC | 670 ms
254,992 KB |
testcase_17 | AC | 63 ms
28,020 KB |
testcase_18 | AC | 1,172 ms
477,132 KB |
testcase_19 | AC | 1,005 ms
411,416 KB |
testcase_20 | AC | 1,091 ms
445,684 KB |
testcase_21 | AC | 1,039 ms
426,060 KB |
testcase_22 | AC | 1,062 ms
434,976 KB |
testcase_23 | AC | 677 ms
276,324 KB |
testcase_24 | MLE | - |
testcase_25 | MLE | - |
testcase_26 | MLE | - |
testcase_27 | MLE | - |
testcase_28 | AC | 3 ms
6,816 KB |
testcase_29 | AC | 3 ms
6,820 KB |
testcase_30 | AC | 3 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,820 KB |
testcase_32 | AC | 3 ms
6,820 KB |
ソースコード
//#define _GLIBCXX_DEBUG //#pragma GCC target("avx2") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> using namespace std; #ifdef LOCAL #include <debug_print.hpp> #define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define OUT(...) (static_cast<void>(0)) #endif #define endl '\n' #define lfs cout<<fixed<<setprecision(15) #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() #define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end()) #define spa << " " << #define fi first #define se second #define MP make_pair #define MT make_tuple #define PB push_back #define EB emplace_back #define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++) #define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--) using ll = long long; using ld = long double; const ll MOD1 = 1e9+7; const ll MOD9 = 998244353; const ll INF = 1e18; using P = pair<ll, ll>; template<typename T> using PQ = priority_queue<T>; template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>; template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;} template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;} ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});} void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;} void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;} void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;} template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);}; template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}}; template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;}; template<typename T>void debug(const vector<T>&v){debug(v,v.size());} template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());} template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;} template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;} template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;} template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;} template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;} template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;} vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1}; template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);} template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));} template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";} template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;} template<typename T>void rearrange(vector<int>&ord, vector<T>&v){ auto tmp = v; for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]]; } template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){ rearrange(ord, head); rearrange(ord, tail...); } template<typename T> vector<int> ascend(const vector<T>&v){ vector<int>ord(v.size());iota(ord.begin(),ord.end(),0); sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);}); return ord; } template<typename T> vector<int> descend(const vector<T>&v){ vector<int>ord(v.size());iota(ord.begin(),ord.end(),0); sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);}); return ord; } template<typename T> vector<T> inv_perm(const vector<T>&ord){ vector<T>inv(ord.size()); for(int i=0;i<ord.size();i++)inv[ord[i]] = i; return inv; } ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;} ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;} ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;} ll modulo(ll n,ll d){return (n%d+d)%d;}; template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());} template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());} template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));}; template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());}; //mt19937 mt(chrono::steady_clock::now().time_since_epoch().count()); int popcount(ll x){return __builtin_popcountll(x);}; int poplow(ll x){return __builtin_ctzll(x);}; int pophigh(ll x){return 63 - __builtin_clzll(x);}; template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;}; template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;}; template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;}; template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;}; ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;} ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;} ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;} std::ostream &operator<<(std::ostream &dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char *d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } namespace converter{ int dict[500]; const string lower="abcdefghijklmnopqrstuvwxyz"; const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string digit="0123456789"; const string digit1="123456789"; void regi_str(const string &t){ for(int i=0;i<t.size();i++){ dict[t[i]]=i; } } void regi_int(const string &t){ for(int i=0;i<t.size();i++){ dict[i]=t[i]; } } vector<int>to_int(const string &s,const string &t){ regi_str(t); vector<int>ret(s.size()); for(int i=0;i<s.size();i++){ ret[i]=dict[s[i]]; } return ret; } vector<int>to_int(const string &s){ auto t=s; sort(t.begin(),t.end()); t.erase(unique(t.begin(),t.end()),t.end()); return to_int(s,t); } vector<vector<int>>to_int(const vector<string>&s,const string &t){ regi_str(t); vector<vector<int>>ret(s.size(),vector<int>(s[0].size())); for(int i=0;i<s.size();i++){ for(int j=0;j<s[0].size();j++){ ret[i][j]=dict[s[i][j]]; } } return ret; } vector<vector<int>>to_int(const vector<string>&s){ string t; for(int i=0;i<s.size();i++){ t+=s[i]; } sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end()); return to_int(s,t); } string to_str(const vector<int>&s,const string &t){ regi_int(t); string ret; for(auto z:s)ret+=dict[z]; return ret; } vector<string> to_str(const vector<vector<int>>&s,const string &t){ regi_int(t); vector<string>ret(s.size()); for(int i=0;i<s.size();i++){ for(auto z:s[i])ret[i]+=dict[z]; } return ret; } } template< typename T = int > struct edge { int to; T cost; int id; edge():to(-1),id(-1){}; edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){} operator int() const { return to; } }; template<typename T> using Graph = vector<vector<edge<T>>>; template<typename T> Graph<T>revgraph(const Graph<T> &g){ Graph<T>ret(g.size()); for(int i=0;i<g.size();i++){ for(auto e:g[i]){ int to = e.to; e.to = i; ret[to].push_back(e); } } return ret; } template<typename T> Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){ Graph<T> ret(n); for(int es = 0; es < m; es++){ int u,v; T w=1; cin>>u>>v;u-=indexed,v-=indexed; if(weighted)cin>>w; ret[u].emplace_back(v,w,es); if(!directed)ret[v].emplace_back(u,w,es); } return ret; } template<typename T> Graph<T> readParent(int n,int indexed=1,bool directed=true){ Graph<T>ret(n); for(int i=1;i<n;i++){ int p;cin>>p; p-=indexed; ret[p].emplace_back(i); if(!directed)ret[i].emplace_back(p); } return ret; } namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend ostream &operator<<(ostream &os, const mint &p) { return os << p.val(); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend ostream &operator<<(ostream &os, const mint &p) { return os << p.val(); } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder void solve(){ ll res=0,buf=0; bool judge = true; using modint=atcoder::modint; int n,m;cin>>n>>m; modint::set_mod(m); auto dp=vec(2*n,3,modint(0)); dp[0][2]=1; modint ret=1; rep(i,0,2*n-1){ rep(j,0,3){ rep(o,0,3){ modint mul=dp[i][j]; if(j==2&&o==0)continue; if(j==0&&o>=1)mul*=i; if(j<=1&&o==2)mul*=i+1; dp[i+1][o]+=mul; } } if(i&1)ret*=dp[i+1][0]; } //OUT(dp,ret); rep(i,1,2*n)ret*=i; cout<<ret<<endl; } int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); ll res=0,buf=0; bool judge = true; int T = 1; //cin>>T; while(T--){ solve(); } return 0; }