結果
| 問題 |
No.2667 Constrained Permutation
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-03-08 23:24:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,548 bytes |
| コンパイル時間 | 338 ms |
| コンパイル使用メモリ | 82,156 KB |
| 実行使用メモリ | 255,620 KB |
| 最終ジャッジ日時 | 2024-09-29 20:43:51 |
| 合計ジャッジ時間 | 28,414 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 43 WA * 3 |
ソースコード
import sys
from itertools import permutations
from heapq import heappop,heappush
from collections import deque
import random
import bisect
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
class SegmentTree:
def __init__(self, init_val, segfunc, ide_ele):
n = len(init_val)
self.segfunc = segfunc
self.ide_ele = ide_ele
self.num = 1 << (n - 1).bit_length()
self.tree = [ide_ele] * 2 * self.num
self.size = n
for i in range(n):
self.tree[self.num + i] = init_val[i]
for i in range(self.num - 1, 0, -1):
self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1])
def update(self, k, x):
k += self.num
self.tree[k] = x
while k > 1:
k >>= 1
self.tree[k] = self.segfunc(self.tree[2*k], self.tree[2*k+1])
def query(self, l, r):
if r==self.size:
r = self.num
res = self.ide_ele
l += self.num
r += self.num
right = []
while l < r:
if l & 1:
res = self.segfunc(res, self.tree[l])
l += 1
if r & 1:
right.append(self.tree[r-1])
l >>= 1
r >>= 1
for e in right[::-1]:
res = self.segfunc(res,e)
return res
def checK_zero(N,_lr):
lr = _lr[:]
lr.sort(key=lambda x:x[0],reverse=True)
nxt_num = 0
pq = []
while lr or pq:
while lr and lr[-1][0] <= nxt_num:
l,r = lr.pop()
heappush(pq,r)
#print(lr,pq,nxt_num)
if pq:
r = heappop(pq)
if r < nxt_num:
#print("ban!",pq,lr,nxt_num)
return False
nxt_num += 1
else:
l,r = lr[-1]
nxt_num = l
return True
def check_k(N,k,_lr):
lr = [(l-k,r-k) for l,r in _lr]
lr.sort(key=lambda x:x[0],reverse=True)
pq = []
for i in range(1,N+1):
while lr and lr[-1][0] <= i:
heappush(pq,lr.pop()[1])
if not pq:
return False
r = heappop(pq)
if r < i:
return False
return True
def solve_brute(N,lr):
res = []
R = max(r for l,r in lr)
for k in range(-N,R+1):
if check_k(N,k,lr):
res.append(k)
return res
def solve(N,_lr):
if not checK_zero(N,_lr):
return 0
return []
lr = [(l,r+1) for l,r in _lr]
"""
結婚定理で考える
区間の和集合が区間になるような組のみ考えればいい
(区間の長さ)< (区間の数) である組があれば答えは0 = 相異なる整数を割り当てられるか?
そうでないなら条件を満たすkの範囲は区間になっているので、端点を考えればいい
"""
val_set = set()
for i,(l,r) in enumerate(lr):
val_set.add(l)
val_set.add(r)
val_set = sorted(val_set)
comp = {e:i for i,e in enumerate(val_set)}
lr = [(comp[l],comp[r]) for l,r in lr]
lr.sort(key=lambda x:x[0],reverse=True)
n = len(comp)
cnt = [0] * (n)
for l,r in lr:
cnt[l] += 1
cnt[r] -= 1
for i in range(1,n):
cnt[i] += cnt[i-1]
if 0 in cnt[:n-1]:
return []
L,R = -10**9,10**9
for i,(l,r) in enumerate(lr):
t = i + 1
ll = val_set[l]
L = max(L,t-N+ll-1)
lr.sort(key=lambda x:(x[1],x[0]),reverse=False)
for i,(l,r) in enumerate(lr):
t = i + 1
rr = val_set[r] - 1
R = min(R,rr-t)
#print("LR",L,R)
if L <= R:
return R-L+1
return [k for k in range(L,R+1)]
else:
return 0
return []
def make_test(N):
lr = []
for i in range(N):
l = random.randint(1,2*N)
r = random.randint(l,2*N)
lr.append((l,r))
return lr
while False:
N = random.randint(1,10)
lr = make_test(N)
#N = 2
#lr = [(1,4),(4,4)]
#N = 3
#lr = [(5,6),(6,6),(5,5)]
#N = 4
#lr = [(1,5),(5,7),(3,7),(7,7)]
#N = 4
#lr = [(2,7),(2,4),(4,6),(3,3)]
res = solve(N,lr)
exp = solve_brute(N,lr)
if res != exp:
print("WA")
print(N)
print(lr)
print("res",res)
print("exp",exp)
break
else:
print("AC",N)
N = int(input())
lr = [tuple(mi()) for i in range(N)]
print(solve(N,lr))