結果
| 問題 |
No.2668 Trees on Graph Paper
|
| コンテスト | |
| ユーザー |
k1suxu
|
| 提出日時 | 2024-03-09 00:33:10 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 670 ms / 3,000 ms |
| コード長 | 7,437 bytes |
| コンパイル時間 | 3,079 ms |
| コンパイル使用メモリ | 252,072 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-09-29 21:03:25 |
| 合計ジャッジ時間 | 10,846 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 33 |
ソースコード
// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>
template<typename T>
bool chmax(T &a, const T b) {if(a<b) {a=b; return true;} else {return false;}}
template<typename T>
bool chmin(T &a, const T b) {if(a>b) {a=b; return true;} else {return false;}}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
#define int long long
struct Arbitrary_Modular_Int {
long long x;
Arbitrary_Modular_Int() = default;
Arbitrary_Modular_Int(long long x_) : x(x_ >= 0 ? x_ % get_mod() : (get_mod() - (-x_) % get_mod()) % get_mod()) {}
// static long long& get_mod() {
// static long long mod = 0;
// return mod;
// }
static long long& get_mod() {
static long long mod = 0;
return mod;
}
static void set_mod(long long mod_) {
get_mod() = mod_;
}
long long val() const {
return (x%get_mod()+get_mod())%get_mod();
}
Arbitrary_Modular_Int& operator^=(long long d) {
Arbitrary_Modular_Int ret(1);
long long nx = x;
while(d) {
if(d&1) ret *= nx;
(nx *= nx) %= get_mod();
d >>= 1;
}
*this = ret;
return *this;
}
Arbitrary_Modular_Int operator^(long long d) const {return Arbitrary_Modular_Int(*this) ^= d;}
Arbitrary_Modular_Int pow(long long d) const {return Arbitrary_Modular_Int(*this) ^= d;}
//use this basically
// Arbitrary_Modular_Int inv() const {
// return Arbitrary_Modular_Int(*this) ^ (get_mod()-2);
// }
//only if the module number is not prime
//Don't use. This is broken.
Arbitrary_Modular_Int inv() const {
long long a = (x%get_mod()+get_mod())%get_mod(), b = get_mod(), u = 1, v = 0;
while(b > 0) {
long long t = a/b;
a -= t*b, swap(a, b);
u -= t*v, swap(u, v);
}
return Arbitrary_Modular_Int(u);
}
Arbitrary_Modular_Int& operator+=(const Arbitrary_Modular_Int other) {
if((x += other.x) >= get_mod()) x -= get_mod();
return *this;
}
Arbitrary_Modular_Int& operator-=(const Arbitrary_Modular_Int other) {
if((x -= other.x) < 0) x += get_mod();
return *this;
}
Arbitrary_Modular_Int& operator*=(const Arbitrary_Modular_Int other) {
long long z = x;
z *= other.x;
z %= get_mod();
x = z;
if(x < 0) x += get_mod();
return *this;
}
Arbitrary_Modular_Int& operator/=(const Arbitrary_Modular_Int other) {
return *this = *this * other.inv();
}
Arbitrary_Modular_Int& operator++() {
x++;
if (x == get_mod()) x = 0;
return *this;
}
Arbitrary_Modular_Int& operator--() {
if (x == 0) x = get_mod();
x--;
return *this;
}
Arbitrary_Modular_Int operator+(const Arbitrary_Modular_Int other) const {return Arbitrary_Modular_Int(*this) += other;}
Arbitrary_Modular_Int operator-(const Arbitrary_Modular_Int other) const {return Arbitrary_Modular_Int(*this) -= other;}
Arbitrary_Modular_Int operator*(const Arbitrary_Modular_Int other) const {return Arbitrary_Modular_Int(*this) *= other;}
Arbitrary_Modular_Int operator/(const Arbitrary_Modular_Int other) const {return Arbitrary_Modular_Int(*this) /= other;}
Arbitrary_Modular_Int& operator+=(const long long other) {Arbitrary_Modular_Int other_(other); *this += other_; return *this;}
Arbitrary_Modular_Int& operator-=(const long long other) {Arbitrary_Modular_Int other_(other); *this -= other_; return *this;}
Arbitrary_Modular_Int& operator*=(const long long other) {Arbitrary_Modular_Int other_(other); *this *= other_; return *this;}
Arbitrary_Modular_Int& operator/=(const long long other) {Arbitrary_Modular_Int other_(other); *this /= other_; return *this;}
Arbitrary_Modular_Int operator+(const long long other) const {return Arbitrary_Modular_Int(*this) += other;}
Arbitrary_Modular_Int operator-(const long long other) const {return Arbitrary_Modular_Int(*this) -= other;}
Arbitrary_Modular_Int operator*(const long long other) const {return Arbitrary_Modular_Int(*this) *= other;}
Arbitrary_Modular_Int operator/(const long long other) const {return Arbitrary_Modular_Int(*this) /= other;}
bool operator==(const Arbitrary_Modular_Int other) const {return (*this).val() == other.val();}
bool operator!=(const Arbitrary_Modular_Int other) const {return (*this).val() != other.val();}
bool operator==(const long long other) const {return (*this).val() == other;}
bool operator!=(const long long other) const {return (*this).val() != other;}
Arbitrary_Modular_Int operator-() const {return Arbitrary_Modular_Int(0LL)-Arbitrary_Modular_Int(*this);}
//-1: sqrtが存在しない
//複数存在する場合どれを返すかは不明
long long get_sqrt() {
long long a = val(), p = get_mod();
if(a == 0) return 0;
if(p == 2) return a;
if(Arbitrary_Modular_Int(a).pow((p - 1) >> 1).val() != 1) return -1;
long long b = 1;
while(Arbitrary_Modular_Int(b).pow((p - 1) >> 1).val() == 1) ++b;
long long e = 0, m = p - 1;
while(m % 2 == 0) m >>= 1, ++e;
long long x = Arbitrary_Modular_Int(a).pow((m - 1) >> 1).val();
long long y = a * (x * x % p) % p;
(x *= a) %= p;
long long z = Arbitrary_Modular_Int(b).pow(m).val();
while(y != 1) {
long long j = 0, t = y;
while(t != 1) {
j += 1;
(t *= t) %= p;
}
z = Arbitrary_Modular_Int(z).pow((long long)1 << (e - j - 1)).val();
(x *= z) %= p;
(z *= z) %= p;
(y *= z) %= p;
e = j;
}
return x;
}
};
istream& operator>>(istream& is, Arbitrary_Modular_Int& x) {
long long X;
is >> X;
x = X;
return is;
}
ostream& operator<<(ostream& os, Arbitrary_Modular_Int& x) {
os << x.val();
return os;
}
using mint = Arbitrary_Modular_Int;
void solve() {
const int MX = 1e7;
int n, m;
cin >> n >> m;
mint::set_mod(m);
mint ans = 1;
repi(i, 1, 2*n) ans *= i;
vector<vector<mint>> dp(2, vector<mint>(3, 0));
dp[1][0] = 1, dp[1][1] = 1, dp[1][2] = 1;
repi(i, 1, 2*n-2) {
int cur = i&1;
int nxt = 1^cur;
dp[nxt][0] = dp[cur][0] + dp[cur][1]*(i+1);
dp[nxt][1] = dp[cur][0] + dp[cur][1] + dp[cur][2]*(i+1);
dp[nxt][2] = dp[cur][0] + dp[cur][1] + dp[cur][2];
if(i%2==0) ans *= dp[nxt][2];
}
cout << ans.val() << endl;
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
solve();
return 0;
}
k1suxu