結果
| 問題 |
No.2503 Typical Path Counting Problem on a Grid
|
| コンテスト | |
| ユーザー |
Misuki
|
| 提出日時 | 2024-03-13 13:56:48 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 369 ms / 2,000 ms |
| コード長 | 8,836 bytes |
| コンパイル時間 | 2,756 ms |
| コンパイル使用メモリ | 205,616 KB |
| 実行使用メモリ | 42,612 KB |
| 最終ジャッジ日時 | 2024-09-29 22:51:27 |
| 合計ジャッジ時間 | 5,840 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#pragma GCC optimize("O2")
#include <algorithm>
#include <array>
#include <bit>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <compare>
#include <complex>
#include <concepts>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numbers>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <span>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>
//#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)
#define clock chrono::steady_clock::now().time_since_epoch().count()
#ifdef DEBUG
#define dbg(x) cout << (#x) << " = " << x << '\n'
#else
#define dbg(x)
#endif
namespace R = std::ranges;
namespace V = std::views;
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
//#define double ldb
template<class T>
ostream& operator<<(ostream& os, const pair<T, T> pr) {
return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
for(const T &X : arr)
os << X << ' ';
return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
for(const T &X : vec)
os << X << ' ';
return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
for(const T &x : s)
os << x << ' ';
return os;
}
//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be a prime less than 2^30.
template<uint32_t mod>
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 res = 1, base = mod;
for(i32 i = 0; i < 31; i++)
res *= base, base *= base;
return -res;
}
static constexpr u32 get_mod() {
return mod;
}
static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
static constexpr u32 r = get_r(); //-P^{-1} % 2^32
u32 a;
static u32 reduce(const u64 &b) {
return (b + u64(u32(b) * r) * mod) >> 32;
}
static u32 transform(const u64 &b) {
return reduce(u64(b) * n2);
}
MontgomeryModInt() : a(0) {}
MontgomeryModInt(const int64_t &b)
: a(transform(b % mod + mod)) {}
mint pow(u64 k) const {
mint res(1), base(*this);
while(k) {
if (k & 1)
res *= base;
base *= base, k >>= 1;
}
return res;
}
mint inverse() const { return (*this).pow(mod - 2); }
u32 get() const {
u32 res = reduce(a);
return res >= mod ? res - mod : res;
}
mint& operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
mint& operator/=(const mint &b) {
a = reduce(u64(a) * b.inverse().a);
return *this;
}
mint operator-() { return mint() - mint(*this); }
bool operator==(mint b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(mint b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
friend mint operator+(mint a, mint b) { return a += b; }
friend mint operator-(mint a, mint b) { return a -= b; }
friend mint operator*(mint a, mint b) { return a *= b; }
friend mint operator/(mint a, mint b) { return a /= b; }
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t val;
is >> val;
b = mint(val);
return is;
}
};
using mint = MontgomeryModInt<998244353>;
//source: KACTL(for det() and inv())
template<class Mint>
struct matrix : vector<vector<Mint>> {
matrix(int n, int m) : vector<vector<Mint>>(n, vector<Mint>(m, 0)) {}
matrix(int n) : vector<vector<Mint>>(n, vector<Mint>(n, 0)) {}
int n() const { return ssize(*this); }
int m() const { return ssize((*this)[0]); }
static matrix I(int n) {
auto res = matrix(n, n);
for(int i = 0; i < n; i++)
res[i][i] = 1;
return res;
}
matrix& operator+=(const matrix &b) {
assert(n() == b.n());
assert(m() == b.m());
for(int i = 0; i < n(); i++)
for(int j = 0; j < m(); j++)
(*this)[i][j] += b[i][j];
return *this;
}
matrix& operator-=(const matrix &b) {
assert(n() == b.n());
assert(m() == b.m());
for(int i = 0; i < n(); i++)
for(int j = 0; j < m(); j++)
(*this)[i][j] -= b[i][j];
return *this;
}
matrix& operator*=(const matrix &b) {
assert(m() == b.n());
auto res = matrix(n(), b.m());
for(int i = 0; i < n(); i++)
for(int j = 0; j < b.m(); j++)
for(int k = 0; k < m(); k++)
res[i][j] += (*this)[i][k] * b[k][j];
this -> swap(res);
return *this;
}
matrix pow(ll k) const {
assert(n() == m());
auto res = I(n()), base = *this;
while(k) {
if (k & 1) res *= base;
base *= base, k >>= 1;
}
return res;
}
Mint det() const {
Mint res = 1;
auto a = *this;
for(int i = 0; i < n(); i++) {
for(int j = i + 1; j < m(); j++) {
while(a[j][i] != 0) {
Mint t = a[i][i] / a[j][i];
if (t != 0)
for(int k = i; k < n(); k++)
a[i][k] -= a[j][k] * t;
swap(a[i], a[j]);
res = -res;
}
}
res *= a[i][i];
if (res == 0) return 0;
}
return res;
}
matrix inv() const {
assert(n() == m());
matrix a = *this, tmp = I(n());
vector<int> col(n());
for(int i = 0; i < n(); i++) col[i] = i;
for(int i = 0; i < n(); i++) {
int r = i, c = i;
for(int j = i; j < n(); j++) {
for(int k = i; k < n(); k++) {
if (a[j][k] != 0) {
r = j, c = k;
goto found;
}
}
}
return matrix(0);
found:
a[i].swap(a[r]), tmp[i].swap(tmp[r]);
for(int j = 0; j < n(); j++)
swap(a[j][i], a[j][c]), swap(tmp[j][i], tmp[j][c]);
swap(col[i], col[c]);
Mint v = 1 / a[i][i];
for(int j = i + 1; j < n(); j++) {
Mint f = a[j][i] * v;
a[j][i] = 0;
for(int k = i + 1; k < n(); k++)
a[j][k] -= f * a[i][k];
for(int k = 0; k < n(); k++)
tmp[j][k] -= f * tmp[i][k];
}
for(int j = i + 1; j < n(); j++)
a[i][j] *= v;
for(int j = 0; j < n(); j++)
tmp[i][j] *= v;
a[i][i] = 1;
}
for(int i = n() - 1; i > 0; i--) {
for(int j = 0; j < i; j++) {
Mint v = a[j][i];
for(int k = 0; k < n(); k++)
tmp[j][k] -= v * tmp[i][k];
}
}
for(int i = 0; i < n(); i++)
for(int j = 0; j < n(); j++)
a[col[i]][col[j]] = tmp[i][j];
return a;
}
matrix operator-() { return matrix(n(), m()) - (*this); }
friend matrix operator+(matrix a, matrix b) { return a += b; }
friend matrix operator-(matrix a, matrix b) { return a -= b; }
friend matrix operator*(matrix a, matrix b) { return a *= b; }
friend ostream& operator<<(ostream& os, const matrix& b) {
for(int i = 0; i < b.n(); i++) {
os << '\n';
for(int j = 0; j < b.m(); j++)
os << b[i][j] << ' ';
}
return os;
}
friend istream& operator>>(istream& is, matrix& b) {
for(int i = 0; i < b.n(); i++)
for(int j = 0; j < b.m(); j++)
is >> b[i][j];
return is;
}
};
const int MAX = 10000001;
mint f[MAX];
signed main() {
ios::sync_with_stdio(false), cin.tie(NULL);
f[0] = 1, f[1] = 2;
for(int i = 2; i < MAX; i++)
f[i] = f[i - 1] * (2 * i) + f[i - 2] * (i - 1);
int t; cin >> t;
while(t--) {
ll n, m; cin >> n >> m;
if (min(n, m) == 0) {
cout << 1 << '\n';
continue;
}
if (n > m) swap(n, m);
matrix<mint> M(2, 2), x(2, 1);
M[0][1] = 1, M[1][0] = n, M[1][1] = 2 * n + 1;
x[0][0] = f[n - 1], x[1][0] = f[n];
auto b = M.pow(m - n) * x;
cout << f[n] * b[1][0] + f[n - 1] * b[0][0] * n << '\n';
}
return 0;
}
Misuki