結果

問題 No.376 立方体のN等分 (2)
ユーザー EmKjpEmKjp
提出日時 2016-06-05 00:20:26
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 324 ms / 5,000 ms
コード長 5,470 bytes
コンパイル時間 2,091 ms
コンパイル使用メモリ 109,696 KB
実行使用メモリ 35,584 KB
最終ジャッジ日時 2024-11-06 21:52:57
合計ジャッジ時間 9,152 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 116 ms
35,328 KB
testcase_01 AC 118 ms
35,200 KB
testcase_02 AC 117 ms
35,328 KB
testcase_03 AC 118 ms
35,200 KB
testcase_04 AC 119 ms
35,072 KB
testcase_05 AC 119 ms
35,072 KB
testcase_06 AC 118 ms
35,328 KB
testcase_07 AC 118 ms
35,328 KB
testcase_08 AC 118 ms
35,456 KB
testcase_09 AC 118 ms
35,328 KB
testcase_10 AC 133 ms
35,200 KB
testcase_11 AC 118 ms
35,328 KB
testcase_12 AC 118 ms
35,072 KB
testcase_13 AC 118 ms
35,200 KB
testcase_14 AC 117 ms
35,200 KB
testcase_15 AC 119 ms
35,456 KB
testcase_16 AC 304 ms
35,328 KB
testcase_17 AC 120 ms
35,072 KB
testcase_18 AC 117 ms
35,456 KB
testcase_19 AC 120 ms
35,200 KB
testcase_20 AC 119 ms
35,328 KB
testcase_21 AC 317 ms
35,328 KB
testcase_22 AC 118 ms
35,328 KB
testcase_23 AC 317 ms
35,328 KB
testcase_24 AC 281 ms
35,456 KB
testcase_25 AC 117 ms
35,200 KB
testcase_26 AC 324 ms
35,328 KB
testcase_27 AC 119 ms
35,200 KB
testcase_28 AC 118 ms
35,200 KB
testcase_29 AC 116 ms
35,072 KB
testcase_30 AC 118 ms
35,328 KB
testcase_31 AC 117 ms
35,200 KB
testcase_32 AC 119 ms
35,200 KB
testcase_33 AC 119 ms
35,328 KB
testcase_34 AC 117 ms
35,200 KB
testcase_35 AC 118 ms
35,328 KB
testcase_36 AC 118 ms
35,328 KB
testcase_37 AC 118 ms
35,456 KB
testcase_38 AC 119 ms
35,584 KB
testcase_39 AC 117 ms
35,328 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.IO;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Text;


partial class Solver {
    public class Factor {
        public long Prime;
        public long Count;
        public List<long> Pows = new List<long>();
    }

    public class PrimeSet : List<int> {
        private bool[] isPrime;

        public PrimeSet(int size)
            : base() {
            isPrime = Enumerable.Repeat(true, size).ToArray();
            Add(2);
            for (int i = 3; i <= size; i += 2) {
                if (!isPrime[i >> 1]) continue;
                Add(i);
                for (long j = (long)i * i; j <= size; j += i + i)
                    isPrime[j >> 1] = false;
            }
        }

        public bool IsPrime(long x) {
            if (x == 2) return true;
            if (x <= 1 || x % 2 == 0) return false;
            return isPrime[x >> 1];
        }
    }

    static public List<Factor> Factorization(PrimeSet primes, long x) {
        var ret = new List<Factor>();

        foreach (var p in primes) {
            if (x % p == 0) {
                int count = 0;
                var factor = new Factor();
                long pow = 1;
                factor.Pows.Add(pow);
                while (x % p == 0) {
                    count++;
                    x /= p;
                    pow *= p;
                    factor.Pows.Add(pow);
                }
                factor.Pows.Add(pow * p);
                factor.Prime = p;
                factor.Count = count;
                ret.Add(factor);
            }
        }

        if (x > 1) ret.Add(new Factor { Prime = x, Count = 1, Pows = new List<long> { 1, x } });

        return ret;
    }
    // 
    long Solve(List<Factor> factors, int pos = 0, long a = 1, long b = 1, long c = 1) {
        if (pos == factors.Count) {
            return a + b + c - 3;
        } else {
            var prime = factors[pos].Prime;
            var count = factors[pos].Count;
            var pows = factors[pos].Pows;
            long result = long.MaxValue;
            for (int x = 0; x <= count; x++) {
                for (int y = 0; x + y <= count; y++) {
                    int z = (int)(count - x - y);

                    var sa = x == 0 ? 1 : pows[x];
                    var sb = y == 0 ? 1 : pows[y];
                    var sc = z == 0 ? 1 : pows[z];

                    var sub = Solve(factors, pos + 1, a * sa, b * sb, c * sc);
                    result = Math.Min(sub, result);
                }
            }
            return result;
        }
    }

    public void Run() {
        var N = nl();
        long tmin = long.MaxValue, tmax = 0;

        var primeSet = new PrimeSet(10000010);
        var factors = Factorization(primeSet, N);

        tmin = Solve(factors);
        tmax = N - 1;

        cout.WriteLine(string.Format("{0} {1}", tmin, tmax));
    }
}

// PREWRITEN CODE BEGINS FROM HERE
partial class Solver : Scanner {
    public static void Main(string[] args) {
        new Solver(Console.In, Console.Out).Run();
    }

    TextReader cin;
    TextWriter cout;

    public Solver(TextReader reader, TextWriter writer)
        : base(reader) {
        this.cin = reader;
        this.cout = writer;
    }
    public Solver(string input, TextWriter writer)
        : this(new StringReader(input), writer) {
    }

    public int ni() { return NextInt(); }
    public int[] ni(int n) { return NextIntArray(n); }
    public long nl() { return NextLong(); }
    public long[] nl(int n) { return NextLongArray(n); }
    public double nd() { return NextDouble(); }
    public string ns() { return Next(); }
    public string[] ns(int n) { return NextArray(n); }
}

public class Scanner {
    private TextReader Reader;
    private Queue<String> TokenQueue = new Queue<string>();
    private CultureInfo ci = CultureInfo.InvariantCulture;

    public Scanner()
        : this(Console.In) {
    }

    public Scanner(TextReader reader) {
        this.Reader = reader;
    }

    public int NextInt() { return Int32.Parse(Next(), ci); }
    public long NextLong() { return Int64.Parse(Next(), ci); }
    public double NextDouble() { return double.Parse(Next(), ci); }
    public string[] NextArray(int size) {
        var array = new string[size];
        for (int i = 0; i < size; i++) array[i] = Next();
        return array;
    }
    public int[] NextIntArray(int size) {
        var array = new int[size];
        for (int i = 0; i < size; i++) array[i] = NextInt();
        return array;
    }

    public long[] NextLongArray(int size) {
        var array = new long[size];
        for (int i = 0; i < size; i++) array[i] = NextLong();
        return array;
    }

    public String Next() {
        if (TokenQueue.Count == 0) {
            if (!StockTokens()) throw new InvalidOperationException();
        }
        return TokenQueue.Dequeue();
    }

    public bool HasNext() {
        if (TokenQueue.Count > 0)
            return true;
        return StockTokens();
    }

    private bool StockTokens() {
        while (true) {
            var line = Reader.ReadLine();
            if (line == null) return false;
            var tokens = line.Trim().Split(" ".ToCharArray(), StringSplitOptions.RemoveEmptyEntries);
            if (tokens.Length == 0) continue;
            foreach (var token in tokens)
                TokenQueue.Enqueue(token);
            return true;
        }
    }
}
0