結果
問題 |
No.2674 k-Walk on Bipartite
|
ユーザー |
|
提出日時 | 2024-03-14 14:59:51 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 365 ms / 2,000 ms |
コード長 | 1,868 bytes |
コンパイル時間 | 241 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 99,584 KB |
最終ジャッジ日時 | 2024-09-29 23:42:58 |
合計ジャッジ時間 | 6,469 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 36 |
ソースコード
#!/usr/bin/pypy3 from collections import deque Yes = "Yes" Unknown = "Unknown" No = "No" def main(): # 入力受取 N, M = map(int, input().split()) s, t, k = map(int, input().split()) s -= 1 t -= 1 adj = [[] for _ in range(N)] for i in range(M): u, v = map(int, input().split()) u -= 1 v -= 1 adj[u].append((v)) adj[v].append((u)) # BFS que = deque() dist = [0] * N visited = [False] * N que.append(s) dist[s] = 0 visited[s] = True while len(que) != 0: v = que.popleft() for u in adj[v]: if not visited[u]: que.append(u) dist[u] = dist[v] + 1 visited[u] = True # グラフ(V, F)に長さkの歩道が存在する if visited[t] and dist[t] <= k and dist[t] % 2 == k % 2 and len(adj[s]) != 0: print(Yes) return # グラフ(V, F)に長さkの歩道が存在しない # sとtが連結 if visited[t]: # 最短経路長がkの偶奇と一致しない if dist[t] % 2 != k % 2: print("No") return # 最短経路長がkの偶奇と一致する # s == tのとき、N = 1かで判定 if s == t: print(Unknown if N != 1 else No) return # s != tのとき、最短経路長を 1 または 2 にできる min_dist = (1 if k % 2 else 2) print(Unknown if min_dist <= k else No) return # sとtが非連結 # N = 2 かつ k%2 == 0 のとき別処理 if N == 2 and k % 2 == 0: print(No) return # それ以外のとき、最短経路長を 1 または 2 の好きな方にできる min_dist = (1 if k % 2 else 2) print(Unknown if min_dist <= k else No) return if __name__ == "__main__": main()