結果
問題 | No.125 悪の花弁 |
ユーザー | Mao-beta |
提出日時 | 2024-03-14 18:14:14 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 178 ms / 5,000 ms |
コード長 | 3,515 bytes |
コンパイル時間 | 169 ms |
コンパイル使用メモリ | 82,168 KB |
実行使用メモリ | 130,584 KB |
最終ジャッジ日時 | 2024-09-29 23:45:36 |
合計ジャッジ時間 | 2,100 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 140 ms
103,380 KB |
testcase_01 | AC | 173 ms
127,368 KB |
testcase_02 | AC | 178 ms
129,420 KB |
testcase_03 | AC | 175 ms
130,584 KB |
testcase_04 | AC | 137 ms
103,916 KB |
testcase_05 | AC | 134 ms
102,588 KB |
ソースコード
import sys import math import bisect from heapq import heapify, heappop, heappush from collections import deque, defaultdict, Counter from functools import lru_cache from itertools import accumulate, combinations, permutations, product sys.setrecursionlimit(1000000) MOD = 10 ** 9 + 7 MOD99 = 998244353 input = lambda: sys.stdin.readline().strip() NI = lambda: int(input()) NMI = lambda: map(int, input().split()) NLI = lambda: list(NMI()) SI = lambda: input() SMI = lambda: input().split() SLI = lambda: list(SMI()) EI = lambda m: [NLI() for _ in range(m)] class Comb: """nCrのnもrも10**7くらいまで""" def __init__(self, n, mod): self.mod = mod self.fac = [1] * (n + 1) self.inv = [1] * (n + 1) for i in range(1, n + 1): self.fac[i] = self.fac[i - 1] * i % self.mod self.inv[n] = pow(self.fac[n], self.mod - 2, self.mod) for i in range(n - 1, 0, -1): self.inv[i] = self.inv[i + 1] * (i + 1) % self.mod def C(self, n, r): if n < r: return 0 if n < 0 or r < 0: return 0 return self.fac[n] * self.inv[r] % self.mod * self.inv[n - r] % self.mod def P(self, n, r): if n < r: return 0 if n < 0 or r < 0: return 0 return self.fac[n] * self.inv[n - r] % self.mod def H(self, n, r): """ n個のものから重複を許してr個取り出す """ if n == r == 0: return 1 return self.C(n + r - 1, r) def multi(self, L): res = self.fac[sum(L)] for l in L: res = res * self.inv[l] % self.mod return res # 高速エラストテネス sieve[n]はnの最小の素因数 def make_prime_table(n): sieve = list(range(n + 1)) sieve[0] = -1 sieve[1] = -1 for i in range(4, n + 1, 2): sieve[i] = 2 for i in range(3, int(n ** 0.5) + 1, 2): if sieve[i] != i: continue for j in range(i * i, n + 1, i * 2): if sieve[j] == j: sieve[j] = i return sieve prime_table = make_prime_table(1000) # 素数列挙 primes = [p for i, p in enumerate(prime_table) if i == p] # 素因数分解 上のprime_tableと組み合わせて使う def prime_factorize(n): result = [] while n != 1: p = prime_table[n] e = 0 while n % p == 0: n //= p e += 1 result.append((p, e)) return result # Nの素因数分解を辞書で返す(単体) def prime_fact(n): root = int(n**0.5) + 1 prime_dict = {} for i in range(2, root): cnt = 0 while n % i == 0: cnt += 1 n = n // i if cnt: prime_dict[i] = cnt if n != 1: prime_dict[n] = 1 return prime_dict # 約数列挙(単体) def divisors(x): res = set() for i in range(1, int(x**0.5) + 2): if x % i == 0: res.add(i) res.add(x//i) return res def main(): K = NI() C = NLI() G = math.gcd(*C) com = Comb(10**6*2, MOD) D = sorted(list(divisors(G))) S = sum(C) Sinv = pow(S, MOD-2, MOD) # 周期iの配置の数(回転無視) dp = [0] * (S+1) ans = 0 for d in D: L = [c//(G//d) for c in C] dp[d] = com.multi(L) for dd in D: if dd < d and d % dd == 0: dp[d] -= dp[dd] ans += dp[d] * (G//d) * Sinv % MOD print(ans % MOD) if __name__ == "__main__": main()