結果
問題 | No.2703 FizzBuzz Letter Counting |
ユーザー |
![]() |
提出日時 | 2024-03-15 01:03:48 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,856 bytes |
コンパイル時間 | 5,921 ms |
コンパイル使用メモリ | 311,560 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-09-30 15:15:30 |
合計ジャッジ時間 | 86,135 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 55 WA * 4 TLE * 1 |
ソースコード
#include <bits/stdc++.h>using namespace std;#include <atcoder/all>using namespace atcoder;template<typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); }template<typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); }#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)#define rep2(i, m ,n) for (int i = (m); i < (long long)(n); i++)#define REP(i, n) for (long long i = 1; i < (long long)(n); i++)typedef long long ll;#define updiv(N,X) (N + X - 1) / X#define l(n) n.begin(),n.end()#define YesNo(Q) Q==1?cout<<"Yes":cout<<"No"using P = pair<int, int>;using mint = modint;const int MOD = 998244353LL;const ll INF = 999999999999LL;vector<long long> fact, fact_inv, inv;/* init_nCk :二項係数のための前処理計算量:O(n)*/template <typename T>void input(vector<T> &v){rep(i,v.size()){cin>>v[i];}return;}void init_nCk(int SIZE) {fact.resize(SIZE + 5);fact_inv.resize(SIZE + 5);inv.resize(SIZE + 5);fact[0] = fact[1] = 1;fact_inv[0] = fact_inv[1] = 1;inv[1] = 1;for (int i = 2; i < SIZE + 5; i++) {fact[i] = fact[i - 1] * i % MOD;inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD;}}/* nCk :MODでの二項係数を求める(前処理 int_nCk が必要)計算量:O(1)*/long long nCk(int n, int k) {assert(!(n < k));assert(!(n < 0 || k < 0));return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD;}long long modpow(long long a, long long n, long long mod) {long long res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}ll POW(ll a,ll n){long long res = 1;while (n > 0) {if (n & 1) res = res * a;a = a * a;n >>= 1;}return res;}ll rp(ll a,ll m){if(a==1){return 1;}else if(a%2==1){return (rp(a-1,m)*10+1)%m;}else{return (rp(a/2,m)*(modpow(10LL,a/2,m)+1))%m;}}inline long long mod(long long a, long long m) {return (a % m + m) % m;}long long extGcd(long long a, long long b, long long &p, long long &q) {if (b == 0) { p = 1; q = 0; return a; }long long d = extGcd(b, a%b, q, p);q -= a/b * p;return d;}pair<long long, long long> ChineseRem(long long b1, long long m1, long long b2, long long m2) {long long p, q;long long d = extGcd(m1, m2, p, q);if ((b2 - b1) % d != 0) return make_pair(0, -1);long long m = m1 * (m2/d);long long tmp = (b2 - b1) / d * p % (m2/d);long long r = mod(b1 + m1 * tmp, m);return make_pair(r, m);}int main() {int n;cin>>n;vector<ll> v(n);vector<ll> w(n);ll sm = 0;rep(i,n){cin>>v[i]>>w[i];sm += w[i];}if(1==sm){cout<<w[0]+(w[0]/3+w[0]/5)*3<<endl;return 0;}mint ans = 0;ans += modpow(10LL,sm-1,998244353LL);ans *= (9*(sm-1)+35);ans -= 440;ans *= 8;ans /= 135;ans += 21;// cout << ans.val() << endl;ll md15 = 0; ll md998 = 0;ll sm2 = sm;rep(i,n){sm2 -= w[i];md15 += (modpow(10LL,sm2,15LL)*rp(w[i],15)*v[i]);md15 %= 15;md998 += (modpow(10LL,sm2,998244353LL)*rp(w[i],998244353LL)*v[i]);md998 %= 998244353LL;}md15 += 1-modpow(10LL,sm-1,15LL);//cout << 1-modpow(10LL,sm,15LL) << endl;md15 = (md15%15+15)%15;md998 += 1-modpow(10LL,sm-1,998244353LL);//cout << md998 << endl;md998 = (md998%998244353LL+998244353LL)%998244353LL;// cout << sm << endl;rep(i,md15){if((i+modpow(10LL,sm-1,15LL))%3==0){ans += 4-sm;}if((i+modpow(10LL,sm-1,15LL))%5==0){ans += 4-sm;}if((i+modpow(10LL,sm-1,15LL))%15==0){ans += sm;}ans += sm;}//cout << ans.val() << endl;// cout << md998 << endl;ll t = ChineseRem(md15,15LL,md998,998244353LL).first;ans += ((8*sm+32)%998244353LL)*(t/15);cout << ans.val() << endl;}