結果

問題 No.2676 A Tourist
ユーザー ei1333333ei1333333
提出日時 2024-03-15 21:47:17
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 13,706 bytes
コンパイル時間 3,929 ms
コンパイル使用メモリ 269,540 KB
実行使用メモリ 37,120 KB
最終ジャッジ日時 2024-09-30 00:44:09
合計ジャッジ時間 20,035 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 173 ms
36,864 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 33 ms
6,820 KB
testcase_22 WA -
testcase_23 AC 16 ms
6,816 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 AC 1 ms
6,820 KB
testcase_27 AC 135 ms
14,336 KB
testcase_28 AC 558 ms
36,864 KB
testcase_29 AC 139 ms
36,864 KB
testcase_30 AC 465 ms
36,992 KB
testcase_31 AC 390 ms
36,992 KB
testcase_32 AC 145 ms
36,864 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>

using namespace std;

using int64 = long long;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  explicit FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}

#line 1 "structure/develop/super-link-cut-tree.hpp"
/**
 * @brief 何でもできるLCT
 */
template< typename LInfo, typename Lazy >
struct SplayTree {
  struct Node {
    Node *l, *r, *p;
    LInfo info;
    Lazy lazy, lbuf;

    explicit Node(const LInfo &info) : info(info), l(nullptr), r(nullptr),
                                       p(nullptr), lazy(Lazy()), lbuf(Lazy()) {}
  };

  const LInfo e;

  SplayTree() : e(LInfo()) {}

  using NP = Node *;

  void rotr(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
    }
  }

  void rotl(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
    }
  }

  const LInfo &get_info(NP t) {
    return t ? t->info : e;
  }

  void update(NP t) {
    t->info.update(get_info(t->l), get_info(t->r));
  }

  NP get_right(NP t) {
    while(t->r) t = t->r;
    return t;
  }

  NP alloc(const LInfo &v) {
    auto t = new Node(v);
    update(t);
    return t;
  }

  void propagate(NP t, const Lazy &lazy) {
    t->info.propagate(lazy);
    t->lbuf.propagate(lazy);
    t->lazy.propagate(lazy);
  }

  void push(NP t) {
    if(t->l) propagate(t->l, t->lazy);
    if(t->r) propagate(t->r, t->lazy);
    t->lazy = Lazy();
  }

  void splay(NP t) {
    push(t);
    while(t->p) {
      NP q = t->p;
      if(!q->p) {
        if(q->l == t) rotr(t);
        else rotl(t);
      } else {
        NP r = q->p;
        if(r->l == q) {
          if(q->l == t) rotr(q), rotr(t);
          else rotl(t), rotr(t);
        } else {
          if(q->r == t) rotl(q), rotl(t);
          else rotr(t), rotl(t);
        }
      }
    }
  }

  NP insert(NP t, const LInfo &v) {
    if(not t) {
      t = alloc(v);
      return t;
    } else {
      NP cur = get_right(t), z = alloc(v);
      splay(cur);
      z->p = cur;
      cur->r = z;
      update(cur);
      splay(z);
      return z;
    }
  }

  NP erase(NP t) {
    splay(t);
    NP x = t->l, y = t->r;
    delete t;
    if(not x) {
      t = y;
      if(t) t->p = nullptr;
    } else if(not y) {
      t = x;
      t->p = nullptr;
    } else {
      x->p = nullptr;
      t = get_right(x);
      splay(t);
      t->r = y;
      y->p = t;
      update(t);
    }
    return t;
  }
};

template< template< typename, typename > typename _Info,
    template< typename > typename _LInfo, typename Lazy >
struct SuperLinkCutTree {
  using LInfo = _LInfo< Lazy >;
  using Info = _Info< LInfo, Lazy >;

 private:
  struct Node {
    Node *l, *r, *p;
    Info info;
    typename SplayTree< LInfo, Lazy >::Node *light, *belong;
    bool rev;
    Lazy hlazy, llazy;

    bool is_root() const {
      return not p or (p->l != this and p->r != this);
    }

    explicit Node(const Info &info)
        : info(info), l(nullptr), r(nullptr), p(nullptr), rev(false),
          light(nullptr), belong(nullptr), hlazy(Lazy()), llazy(Lazy()) {}
  };

 public:
  using NP = Node *;
  SplayTree< LInfo, Lazy > splay_tree;

 private:
  const Info e;

 private:
  void toggle(NP t) {
    swap(t->l, t->r);
    t->info.toggle();
    t->rev ^= true;
  }

  void rotr(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if((x->l = t->r)) t->r->p = x;
    t->r = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
    }
  }

  void rotl(NP t) {
    NP x = t->p, y = x->p;
    push(x), push(t);
    if((x->r = t->l)) t->l->p = x;
    t->l = x, x->p = t;
    update(x), update(t);
    if((t->p = y)) {
      if(y->l == x) y->l = t;
      if(y->r == x) y->r = t;
    }
  }

  void propagate_heavy(NP t, const Lazy &hlazy) {
    t->hlazy.propagate(hlazy);
    t->info.propagate(hlazy);
  }

  void propagate_light(NP t, const Lazy &llazy) {
    t->llazy.propagate(llazy);
    t->info.propagate_light(llazy);
  }

  void propagate_all(NP t, const Lazy &lazy) {
    propagate_heavy(t, lazy);
    propagate_light(t, lazy);
  }

 public:
  SuperLinkCutTree() : e{Info()}, splay_tree{} {}

  void push(NP t) {
    if(t->rev) {
      if(t->l) toggle(t->l);
      if(t->r) toggle(t->r);
      t->rev = false;
    }
    {
      if(t->l) {
        propagate_heavy(t->l, t->hlazy);
        propagate_light(t->l, t->llazy);
      }
      if(t->r) {
        propagate_heavy(t->r, t->hlazy);
        propagate_light(t->r, t->llazy);
      }
      if(t->light) {
        splay_tree.propagate(t->light, t->llazy);
      }
      t->hlazy = Lazy();
      t->llazy = Lazy();
    }
  }

  void push_rev(NP t) {
    if(t->rev) {
      if(t->l) toggle(t->l);
      if(t->r) toggle(t->r);
      t->rev = false;
    }
  }

  const Info &get_info(NP t) {
    return t ? t->info : e;
  }

  void update(NP t) {
    t->info.update(get_info(t->l), get_info(t->r), splay_tree.get_info(t->light));
  }

  void splay(NP t) {
    push(t);
    {
      NP rot = t;
      while(not rot->is_root()) rot = rot->p;
      t->belong = rot->belong;
      if(t != rot) rot->belong = nullptr;
    }
    while(not t->is_root()) {
      NP q = t->p;
      if(q->is_root()) {
        push_rev(q), push_rev(t);
        if(q->l == t) rotr(t);
        else rotl(t);
      } else {
        NP r = q->p;
        push_rev(r), push_rev(q), push_rev(t);
        if(r->l == q) {
          if(q->l == t) rotr(q), rotr(t);
          else rotl(t), rotr(t);
        } else {
          if(q->r == t) rotl(q), rotl(t);
          else rotr(t), rotl(t);
        }
      }
    }
  }

  NP expose(NP t) {
    NP rp = nullptr;
    for(NP cur = t; cur; cur = cur->p) {
      splay(cur);
      if(cur->r) {
        cur->light = splay_tree.insert(cur->light, cur->r->info.link());
        cur->r->belong = cur->light;
      }
      cur->r = rp;
      if(cur->r) {
        splay_tree.splay(cur->r->belong);
        propagate_all(cur->r, cur->r->belong->lbuf);
        push(cur->r);
        cur->light = splay_tree.erase(cur->r->belong);
      }
      update(cur);
      rp = cur;
    }
    splay(t);
    return rp;
  }

  void link(NP child, NP parent) {
    expose(parent);
    expose(child);
    child->p = parent;
    parent->r = child;
    update(parent);
  }

  void cut(NP child) {
    expose(child);
    NP parent = child->l;
    child->l = nullptr;
    parent->p = nullptr;
    update(child);
  }

  void evert(NP t) {
    expose(t);
    toggle(t);
    push(t);
  }

  NP alloc(const Info &info) {
    NP t = new Node(info);
    update(t);
    return t;
  }

  bool is_connected(NP u, NP v) {
    expose(u), expose(v);
    return u == v or u->p;
  }

  vector< NP > build(vector< Info > &vs) {
    vector< NP > nodes(vs.size());
    for(int i = 0; i < (int) vs.size(); i++) {
      nodes[i] = alloc(vs[i]);
    }
    return nodes;
  }

  NP lca(NP u, NP v) {
    if(not is_connected(u, v)) return nullptr;
    expose(u);
    return expose(v);
  }

  void set_key(NP t, const Info &v) {
    expose(t);
    t->info = move(v);
    update(t);
  }

  void set_propagate_path(NP t, const Lazy &lazy) {
    expose(t);
    propagate_heavy(t, lazy);
    push(t);
    update(t);
  }

  void set_propagate_path(NP u, NP v, const Lazy &lazy) {
    evert(u);
    set_propagate_path(v, lazy);
  }

  void set_propagate_all(NP t, const Lazy &lazy) {
    expose(t);
    propagate_all(t, lazy);
    push(t);
    update(t);
  }

  void set_propagate_subtree(NP t, const Lazy &lazy) {
    expose(t);
    NP l = t->l;
    t->l = nullptr;
    propagate_all(t, lazy);
    push(t);
    t->l = l;
    update(t);
  }

  const Info &query(NP u) {
    expose(u);
    return get_info(u);
  }

  const Info &query_path(NP u, NP v) {
    evert(u);
    expose(v);
    return get_info(v);
  }

  Info query_subtree(NP u) {
    expose(u);
    NP l = u->l;
    u->l = nullptr;
    update(u);
    auto ret = u->info;
    u->l = l;
    update(u);
    return ret;
  }
};

/*
using T = int64_t;
// 遅延伝搬をするための作用素
struct Lazy {

  // 単位元
  Lazy() {}

  // 初期化
  Lazy(T v) {}

  // 遅延伝搬
  void propagate(const Lazy &p) {}
};

// Light-edge の情報
template< typename Lazy >
struct LInfo {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() {}

  // 初期化
  LInfo(T v) {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {}

  // 部分木への遅延伝搬
  void propagate(const Lazy &p) {}
};

// Heavy-edge の情報
template< typename LInfo, typename Lazy >
struct Info {

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info() {}

  // 初期化
  Info(T v) {}

  // 反転
  void toggle() {}

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {}

  // 親と light-edge で繋げる
  LInfo link() const { return LInfo(); }

  // 遅延伝搬
  void propagate(const Lazy &p) {}

  // light-edgeに対する遅延伝搬
  // pathとsubtreeの遅延伝搬が両方ある場合に実装する
  void propagate_light(const Lazy &p) {}
};

using LCT = SuperLinkCutTree< Info, LInfo, Lazy >;
*/
#line 2 "structure/develop/vertex-set-path-sum.hpp"

/**
 * @brief Vertex Set Path Sum
 */
using T = int64_t;

// 遅延伝搬をするための作用素
struct Lazy {

  // 単位元
  Lazy() {}

  // 初期化
  Lazy(T v) {}

  // 遅延伝搬
  void propagate(const Lazy &p) {}
};

// Light-edge の情報
template< typename Lazy >
struct LInfo {
  T key, val;
  // 単位元(キーの値はアクセスしないので未初期化でもよい
  LInfo() : val{0} {}

  // 初期化
  LInfo(T v) : key{v} {}

  // l, r は Splay-tree の子 (原理上、各ノード区別はない)
  void update(const LInfo &l, const LInfo &r) {
    val = l.val + r.val + key;
  }

  // 部分木への遅延伝搬
  void propagate(const Lazy &p) {}
};

// Heavy-edge の情報
template< typename LInfo, typename Lazy >
struct Info {
  T v;

  T sum;
  T most_left, most_right;

  // 単位元(キーの値はアクセスしないので未初期化でもよい
  Info() : sum{0}, most_left{infll}, most_right{infll} {}

  // 初期化
  Info(T v) : v{v} {}

  // 反転
  void toggle() { swap(most_left, most_right); }

  // pが親, cがheavy-edgeで結ばれた子, lがそれ以外の子
  void update(const Info &p, const Info &c, const LInfo &l) {
    sum = p.sum + v + c.sum + l.val;
    most_left = p.most_left;
    if(most_left == infll) most_left = v;
    most_right = p.most_right;
    if(most_right == infll) most_right = v;
  }

  // 親と light-edge で繋げる
  LInfo link() const { return LInfo(most_left == infll ? 0ll : most_left); }

  // 遅延伝搬
  void propagate(const Lazy &p) {}

  // light-edgeに対する遅延伝搬
  // pathとsubtreeの遅延伝搬が両方ある場合に実装する
  void propagate_light(const Lazy &p) {}
};

using LCT = SuperLinkCutTree< Info, LInfo, Lazy >;

int main() {
  int N, Q;
  cin >> N >> Q;
  vector< int > A(N);
  cin >> A;
  LCT lct;
  vector< LCT::NP > vs(N);
  for(int i = 0; i < N; i++) {
    vs[i] = lct.alloc(A[i]);
  }
  for(int i = 1; i < N; i++) {
    int u, v;
    cin >> u >> v;
    --u, --v;
    lct.evert(vs[u]);
    lct.link(vs[u], vs[v]);
  }
  while(Q--) {
    int t, u, v;
    cin >> t >> u >> v;
    if(t == 0) {
      --u;
      lct.set_key(vs[u], vs[u]->info.v + v);
    } else {
      --u, --v;
      cout << lct.query_path(vs[u], vs[v]).sum << "\n";
    }
  }
}
0