結果
問題 | No.2674 k-Walk on Bipartite |
ユーザー | 👑 binap |
提出日時 | 2024-03-15 21:55:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,397 bytes |
コンパイル時間 | 4,643 ms |
コンパイル使用メモリ | 280,228 KB |
実行使用メモリ | 19,436 KB |
最終ジャッジ日時 | 2024-09-30 01:02:46 |
合計ジャッジ時間 | 8,455 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 120 ms
15,204 KB |
testcase_08 | AC | 193 ms
16,612 KB |
testcase_09 | AC | 97 ms
14,892 KB |
testcase_10 | AC | 226 ms
17,952 KB |
testcase_11 | AC | 133 ms
13,208 KB |
testcase_12 | AC | 236 ms
17,304 KB |
testcase_13 | AC | 88 ms
14,112 KB |
testcase_14 | AC | 22 ms
9,176 KB |
testcase_15 | AC | 255 ms
19,188 KB |
testcase_16 | AC | 160 ms
16,136 KB |
testcase_17 | AC | 174 ms
15,796 KB |
testcase_18 | AC | 53 ms
10,376 KB |
testcase_19 | AC | 109 ms
14,872 KB |
testcase_20 | AC | 94 ms
14,592 KB |
testcase_21 | AC | 187 ms
17,936 KB |
testcase_22 | AC | 254 ms
19,436 KB |
testcase_23 | AC | 2 ms
6,820 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,820 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 2 ms
6,816 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 2 ms
6,820 KB |
testcase_33 | AC | 2 ms
6,820 KB |
testcase_34 | AC | 2 ms
6,816 KB |
testcase_35 | AC | 2 ms
6,816 KB |
testcase_36 | AC | 2 ms
6,816 KB |
testcase_37 | AC | 2 ms
6,820 KB |
testcase_38 | AC | 2 ms
6,820 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> #define rep(i,n) for(int i=0;i<n;i++) using namespace std; using namespace atcoder; typedef long long ll; typedef vector<int> vi; typedef vector<long long> vl; typedef vector<vector<int>> vvi; typedef vector<vector<long long>> vvl; typedef long double ld; typedef pair<int, int> P; ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;} template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;} template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;} template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;} template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;} template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;} template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;} template<typename T> void chmin(T& a, T b){a = min(a, b);} template<typename T> void chmax(T& a, T b){a = max(a, b);} template<typename T> struct Edge_Dijkstra{ int from, to; T cost; Edge_Dijkstra(int from, int to, T cost) : from(from), to(to), cost(cost) {}; }; const long long INF = 1001001001; template<typename T> struct Dijkstra{ int n, m; vector<bool> initialized; vector<Edge_Dijkstra<T>> E; vector<vector<int>> G; map<int, vector<T>> dist; map<int, vector<int>> idx; Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){} void add_edge(int from, int to, T cost){ Edge_Dijkstra e(from, to, cost); E.push_back(e); G[from].emplace_back(m); m++; } void calc(int s){ initialized[s] = true; dist[s] = vector<T>(n, INF); idx[s] = vector<int>(n, -1); priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<tuple<T, int, int>>> pq; pq.emplace(0, s, -1); while(pq.size()){ auto [cost, from, index] = pq.top(); pq.pop(); if(dist[s][from] <= cost) continue; dist[s][from] = cost; idx[s][from] = index; for(int index : G[from]){ int to = E[index].to; T cost_plus = E[index].cost; if(dist[s][to] <= cost + cost_plus) continue; pq.emplace(cost + cost_plus, to, index); } } } int farthest(int s){ if(!initialized[s]) calc(s); int idx = 0; rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i; return idx; } T get_dist(int s, int t){ if(!initialized[s]) calc(s); return dist[s][t]; } vi restore(int s, int t){ if(!initialized[s]) calc(s); if(dist[s][t] == INF) return vi(0); vi res; while(idx[s][t] != -1){ auto e = E[idx[s][t]]; res.push_back(idx[s][t]); t = e.from; } reverse(res.begin(), res.end()); return res; } }; int main(){ int n, m; cin >> n >> m; int s, t, k; cin >> s >> t >> k; s--; t--; Dijkstra<int> graph(n); rep(i, m){ int u, v; cin >> u >> v; u--; v--; graph.add_edge(u, v, 1); graph.add_edge(v, u, 1); } int dist = graph.get_dist(s, t); if(dist >= INF){ cout << "Unknown\n"; }else{ int diff = abs(dist - k); if(diff % 2) cout << "No\n"; else{ if(dist <= k) cout << "Yes\n"; else cout << "Unknown\n"; } } return 0; }