結果
問題 | No.2674 k-Walk on Bipartite |
ユーザー |
👑 |
提出日時 | 2024-03-15 22:00:02 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,543 bytes |
コンパイル時間 | 4,685 ms |
コンパイル使用メモリ | 268,680 KB |
最終ジャッジ日時 | 2025-02-20 05:06:52 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 WA * 4 |
ソースコード
#include<bits/stdc++.h>#include<atcoder/all>#define rep(i,n) for(int i=0;i<n;i++)using namespace std;using namespace atcoder;typedef long long ll;typedef vector<int> vi;typedef vector<long long> vl;typedef vector<vector<int>> vvi;typedef vector<vector<long long>> vvl;typedef long double ld;typedef pair<int, int> P;ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); returnos;}template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : "");return os;}template<typename T> void chmin(T& a, T b){a = min(a, b);}template<typename T> void chmax(T& a, T b){a = max(a, b);}template<typename T>struct Edge_Dijkstra{int from, to;T cost;Edge_Dijkstra(int from, int to, T cost) : from(from), to(to), cost(cost) {};};const int INF = 1001001001;template<typename T>struct Dijkstra{int n, m;vector<bool> initialized;vector<Edge_Dijkstra<T>> E;vector<vector<int>> G;map<int, vector<T>> dist;map<int, vector<int>> idx;Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}void add_edge(int from, int to, T cost){Edge_Dijkstra e(from, to, cost);E.push_back(e);G[from].emplace_back(m);m++;}void calc(int s){initialized[s] = true;dist[s] = vector<T>(n, INF);idx[s] = vector<int>(n, -1);priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<tuple<T, int, int>>> pq;pq.emplace(0, s, -1);while(pq.size()){auto [cost, from, index] = pq.top(); pq.pop();if(dist[s][from] <= cost) continue;dist[s][from] = cost;idx[s][from] = index;for(int index : G[from]){int to = E[index].to;T cost_plus = E[index].cost;if(dist[s][to] <= cost + cost_plus) continue;pq.emplace(cost + cost_plus, to, index);}}}int farthest(int s){if(!initialized[s]) calc(s);int idx = 0;rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i;return idx;}T get_dist(int s, int t){if(!initialized[s]) calc(s);return dist[s][t];}vi restore(int s, int t){if(!initialized[s]) calc(s);if(dist[s][t] == INF) return vi(0);vi res;while(idx[s][t] != -1){auto e = E[idx[s][t]];res.push_back(idx[s][t]);t = e.from;}reverse(res.begin(), res.end());return res;}};int main(){int n, m;cin >> n >> m;int s, t, k;cin >> s >> t >> k;s--; t--;vvi G(n);Dijkstra<int> graph(n);rep(i, m){int u, v;cin >> u >> v;u--; v--;graph.add_edge(u, v, 1);graph.add_edge(v, u, 1);G[u].push_back(v);G[v].push_back(u);}int dist = graph.get_dist(s, t);if(dist >= INF){cout << "Unknown\n";}else{int diff = abs(dist - k);if(diff % 2) cout << "No\n";else{if(s == t){if(G[s].size() >= 1) cout << "Yes\n";else cout << "No\n";}else{if(dist <= k) cout << "Yes\n";else cout << "Unknown\n";}}}return 0;}