結果
問題 | No.2674 k-Walk on Bipartite |
ユーザー | nono00 |
提出日時 | 2024-03-15 22:23:33 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,472 bytes |
コンパイル時間 | 2,772 ms |
コンパイル使用メモリ | 261,036 KB |
実行使用メモリ | 11,116 KB |
最終ジャッジ日時 | 2024-09-30 01:47:16 |
合計ジャッジ時間 | 4,553 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 29 ms
8,424 KB |
testcase_08 | AC | 38 ms
9,320 KB |
testcase_09 | AC | 24 ms
7,916 KB |
testcase_10 | AC | 44 ms
10,424 KB |
testcase_11 | AC | 27 ms
7,912 KB |
testcase_12 | AC | 44 ms
10,596 KB |
testcase_13 | AC | 21 ms
7,528 KB |
testcase_14 | AC | 7 ms
6,816 KB |
testcase_15 | AC | 47 ms
10,952 KB |
testcase_16 | AC | 33 ms
8,812 KB |
testcase_17 | AC | 34 ms
9,008 KB |
testcase_18 | AC | 13 ms
6,816 KB |
testcase_19 | AC | 26 ms
8,256 KB |
testcase_20 | AC | 22 ms
7,908 KB |
testcase_21 | AC | 36 ms
9,104 KB |
testcase_22 | AC | 50 ms
11,116 KB |
testcase_23 | AC | 2 ms
6,820 KB |
testcase_24 | AC | 2 ms
6,816 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,816 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 1 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 2 ms
6,816 KB |
testcase_33 | AC | 2 ms
6,820 KB |
testcase_34 | AC | 2 ms
6,820 KB |
testcase_35 | AC | 2 ms
6,816 KB |
testcase_36 | AC | 2 ms
6,820 KB |
testcase_37 | AC | 2 ms
6,816 KB |
testcase_38 | AC | 2 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> #include <iterator> #include <ranges> #include <vector> namespace nono { template <class T> struct EdgeBase { int from; int to; T weight; EdgeBase() {} EdgeBase(int from, int to, T weight = 1): from(from), to(to), weight(weight) {} }; using Edge = EdgeBase<int>; template <class T> using WeightedEdge = EdgeBase<T>; template <class T> class Graph { struct Edge_ { int to; T weight; int id; }; using iterator = std::vector<Edge_>::iterator; using const_iterator = std::vector<Edge_>::const_iterator; using subrange = std::ranges::subrange<iterator, iterator>; using const_subrange = std::ranges::subrange<const_iterator, const_iterator>; public: template <class U> friend Graph<U> to_undirected_graph(int n, const std::vector<EdgeBase<U>>& edges); template <class U> friend Graph<U> to_directed_graph(int n, const std::vector<EdgeBase<U>>& edges); subrange operator[](int i) { return std::ranges::subrange(edges_.begin() + indptr_[i], edges_.begin() + indptr_[i + 1]); } const_subrange operator[](int i) const { return std::ranges::subrange(edges_.begin() + indptr_[i], edges_.begin() + indptr_[i + 1]); } int size() const { return n_; } int edge_size() const { return m_; } bool is_directed() const { return directed_; } bool is_undirected() const { return !is_directed(); } private: Graph(int n, const std::vector<EdgeBase<T>>& edges, bool directed) : n_(n), m_(edges.size()), indptr_(n_ + 1), edges_(directed ? edges.size() : 2 * edges.size()), directed_(directed) { for (const auto& e: edges) { indptr_[e.from + 1]++; if (!directed_) indptr_[e.to + 1]++; } for (int i = 0; i < n_; i++) { indptr_[i + 1] += indptr_[i]; } auto index = indptr_; for (int i = 0; i < std::ssize(edges); i++) { const auto& e = edges[i]; edges_[index[e.from]++] = Edge_(e.to, e.weight, i); if (!directed_) edges_[index[e.to]++] = Edge_(e.from, e.weight, i); } } int n_; int m_; std::vector<int> indptr_; std::vector<Edge_> edges_; bool directed_; }; template <class T> Graph<T> to_undirected_graph(int n, const std::vector<EdgeBase<T>>& edges) { return Graph<T>(n, edges, false); } template <class T> Graph<T> to_directed_graph(int n, const std::vector<EdgeBase<T>>& edges) { return Graph<T>(n, edges, true); } } // namespace nono #include <limits> #include <queue> #include <vector> namespace nono { template <class T> std::vector<T> bfs(const Graph<T>& graph, int source) { constexpr T NONE = std::numeric_limits<T>::min(); std::vector<T> dist(graph.size(), NONE); dist[source] = 0; std::queue<int> que; que.push(source); while (!que.empty()) { int u = que.front(); que.pop(); for (const auto& e: graph[u]) { if (dist[e.to] == NONE) { dist[e.to] = dist[u] + e.weight; que.push(e.to); } } } return dist; } } // namespace nono namespace nono { void solve() { int n, m; int s, t, k; std::cin >> n >> m >> s >> t >> k; if (n == 1) { std::cout << "No" << '\n'; return; } if (s == t && k % 2 == 1) { std::cout << "No" << '\n'; return; } s--; t--; std::vector<Edge> edges; for (int i = 0; i < m; i++) { int u, v; std::cin >> u >> v; u--; v--; edges.emplace_back(u, v); } auto graph = to_undirected_graph(n, edges); auto dist = bfs(graph, s); int count = 0; for (int i = 0; i < n; i++) { if (dist[i] >= 0) { count++; } } if (s == t && count == 1) { std::cout << "Unknown" << '\n'; return; } if (dist[t] < 0) { std::cout << "Unknown" << '\n'; } else if (dist[t] % 2 != k % 2) { std::cout << "No" << '\n'; } else if (dist[t] <= k) { std::cout << "Yes" << '\n'; } else { std::cout << "Unknown" << '\n'; } } } // namespace nono int main() { std::cin.tie(0)->sync_with_stdio(0); std::cout << std::fixed << std::setprecision(16); int t = 1; while (t--) nono::solve(); }