結果
問題 | No.2675 KUMA |
ユーザー |
![]() |
提出日時 | 2024-03-15 22:27:41 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 21,699 bytes |
コンパイル時間 | 6,300 ms |
コンパイル使用メモリ | 331,936 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-09-30 01:52:57 |
合計ジャッジ時間 | 7,131 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 47 |
ソースコード
#line 1 "/home/maspy/compro/library/my_template.hpp"#if defined(LOCAL)#include <my_template_compiled.hpp>#else// https://codeforces.com/blog/entry/96344#pragma GCC optimize("Ofast,unroll-loops")#pragma GCC target("avx2,popcnt")#include <bits/stdc++.h>using namespace std;using ll = long long;using u32 = unsigned int;using u64 = unsigned long long;template <class T>constexpr T infty = 0;template <>constexpr int infty<int> = 1'000'000'000;template <>constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;template <>constexpr u32 infty<u32> = infty<int>;template <>constexpr u64 infty<u64> = infty<ll>;template <>constexpr double infty<double> = infty<ll>;template <>constexpr long double infty<long double> = infty<ll>;using pi = pair<ll, ll>;using vi = vector<ll>;template <class T>using vc = vector<T>;template <class T>using vvc = vector<vc<T>>;template <class T>using vvvc = vector<vvc<T>>;template <class T>using vvvvc = vector<vvvc<T>>;template <class T>using vvvvvc = vector<vvvvc<T>>;template <class T>using pq = priority_queue<T>;template <class T>using pqg = priority_queue<T, vector<T>, greater<T>>;#define vv(type, name, h, ...) \vector<vector<type>> name(h, vector<type>(__VA_ARGS__))#define vvv(type, name, h, w, ...) \vector<vector<vector<type>>> name( \h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))#define vvvv(type, name, a, b, c, ...) \vector<vector<vector<vector<type>>>> name( \a, vector<vector<vector<type>>>( \b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))// https://trap.jp/post/1224/#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)#define overload4(a, b, c, d, e, ...) e#define overload3(a, b, c, d, ...) d#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)#define FOR_subset(t, s) \for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))#define all(x) x.begin(), x.end()#define len(x) ll(x.size())#define elif else if#define eb emplace_back#define mp make_pair#define mt make_tuple#define fi first#define se second#define stoi stollint popcnt(int x) { return __builtin_popcount(x); }int popcnt(u32 x) { return __builtin_popcount(x); }int popcnt(ll x) { return __builtin_popcountll(x); }int popcnt(u64 x) { return __builtin_popcountll(x); }int popcnt_mod_2(int x) { return __builtin_parity(x); }int popcnt_mod_2(u32 x) { return __builtin_parity(x); }int popcnt_mod_2(ll x) { return __builtin_parityll(x); }int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);}template <typename T>T ceil(T x, T y) {return floor(x + y - 1, y);}template <typename T>T bmod(T x, T y) {return x - y * floor(x, y);}template <typename T>pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};}template <typename T, typename U>T SUM(const vector<U> &A) {T sm = 0;for (auto &&a: A) sm += a;return sm;}#define MIN(v) *min_element(all(v))#define MAX(v) *max_element(all(v))#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))#define UNIQUE(x) \sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()template <typename T>T POP(deque<T> &que) {T a = que.front();que.pop_front();return a;}template <typename T>T POP(pq<T> &que) {T a = que.top();que.pop();return a;}template <typename T>T POP(pqg<T> &que) {T a = que.top();que.pop();return a;}template <typename T>T POP(vc<T> &que) {T a = que.back();que.pop_back();return a;}template <typename F>ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {if (check_ok) assert(check(ok));while (abs(ok - ng) > 1) {auto x = (ng + ok) / 2;(check(x) ? ok : ng) = x;}return ok;}template <typename F>double binary_search_real(F check, double ok, double ng, int iter = 100) {FOR(iter) {double x = (ok + ng) / 2;(check(x) ? ok : ng) = x;}return (ok + ng) / 2;}template <class T, class S>inline bool chmax(T &a, const S &b) {return (a < b ? a = b, 1 : 0);}template <class T, class S>inline bool chmin(T &a, const S &b) {return (a > b ? a = b, 1 : 0);}// ? は -1vc<int> s_to_vi(const string &S, char first_char) {vc<int> A(S.size());FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }return A;}template <typename T, typename U>vector<T> cumsum(vector<U> &A, int off = 1) {int N = A.size();vector<T> B(N + 1);FOR(i, N) { B[i + 1] = B[i] + A[i]; }if (off == 0) B.erase(B.begin());return B;}// stable sorttemplate <typename T>vector<int> argsort(const vector<T> &A) {vector<int> ids(len(A));iota(all(ids), 0);sort(all(ids),[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });return ids;}// A[I[0]], A[I[1]], ...template <typename T>vc<T> rearrange(const vc<T> &A, const vc<int> &I) {vc<T> B(len(I));FOR(i, len(I)) B[i] = A[I[i]];return B;}#endif#line 1 "/home/maspy/compro/library/other/io2.hpp"#define INT(...) \int __VA_ARGS__; \IN(__VA_ARGS__)#define LL(...) \ll __VA_ARGS__; \IN(__VA_ARGS__)#define STR(...) \string __VA_ARGS__; \IN(__VA_ARGS__)#define CHR(...) \char __VA_ARGS__; \IN(__VA_ARGS__)#define DBL(...) \long double __VA_ARGS__; \IN(__VA_ARGS__)#define VEC(type, name, size) \vector<type> name(size); \read(name)#define VV(type, name, h, w) \vector<vector<type>> name(h, vector<type>(w)); \read(name)void read(int &a) { cin >> a; }void read(long long &a) { cin >> a; }void read(char &a) { cin >> a; }void read(double &a) { cin >> a; }void read(long double &a) { cin >> a; }void read(string &a) { cin >> a; }template <class T, class S> void read(pair<T, S> &p) { read(p.first), read(p.second); }template <class T> void read(vector<T> &a) {for(auto &i : a) read(i);}template <class T> void read(T &a) { cin >> a; }void IN() {}template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {read(head);IN(tail...);}template <typename T, typename U>ostream& operator<<(ostream& os, const pair<T, U>& A) {os << A.fi << " " << A.se;return os;}template <typename T>ostream& operator<<(ostream& os, const vector<T>& A) {for (size_t i = 0; i < A.size(); i++) {if(i) os << " ";os << A[i];}return os;}void print() {cout << "\n";cout.flush();}template <class Head, class... Tail>void print(Head&& head, Tail&&... tail) {cout << head;if (sizeof...(Tail)) cout << " ";print(forward<Tail>(tail)...);}void YES(bool t = 1) { print(t ? "YES" : "NO"); }void NO(bool t = 1) { YES(!t); }void Yes(bool t = 1) { print(t ? "Yes" : "No"); }void No(bool t = 1) { Yes(!t); }void yes(bool t = 1) { print(t ? "yes" : "no"); }void no(bool t = 1) { yes(!t); }#line 3 "main.cpp"#line 2 "/home/maspy/compro/library/graph/base.hpp"template <typename T>struct Edge {int frm, to;T cost;int id;};template <typename T = int, bool directed = false>struct Graph {static constexpr bool is_directed = directed;int N, M;using cost_type = T;using edge_type = Edge<T>;vector<edge_type> edges;vector<int> indptr;vector<edge_type> csr_edges;vc<int> vc_deg, vc_indeg, vc_outdeg;bool prepared;class OutgoingEdges {public:OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}const edge_type* begin() const {if (l == r) { return 0; }return &G->csr_edges[l];}const edge_type* end() const {if (l == r) { return 0; }return &G->csr_edges[r];}private:const Graph* G;int l, r;};bool is_prepared() { return prepared; }Graph() : N(0), M(0), prepared(0) {}Graph(int N) : N(N), M(0), prepared(0) {}void build(int n) {N = n, M = 0;prepared = 0;edges.clear();indptr.clear();csr_edges.clear();vc_deg.clear();vc_indeg.clear();vc_outdeg.clear();}void add(int frm, int to, T cost = 1, int i = -1) {assert(!prepared);assert(0 <= frm && 0 <= to && to < N);if (i == -1) i = M;auto e = edge_type({frm, to, cost, i});edges.eb(e);++M;}#ifdef FASTIO// wt, offvoid read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }void read_graph(int M, bool wt = false, int off = 1) {for (int m = 0; m < M; ++m) {INT(a, b);a -= off, b -= off;if (!wt) {add(a, b);} else {T c;read(c);add(a, b, c);}}build();}#endifvoid build() {assert(!prepared);prepared = true;indptr.assign(N + 1, 0);for (auto&& e: edges) {indptr[e.frm + 1]++;if (!directed) indptr[e.to + 1]++;}for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }auto counter = indptr;csr_edges.resize(indptr.back() + 1);for (auto&& e: edges) {csr_edges[counter[e.frm]++] = e;if (!directed)csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});}}OutgoingEdges operator[](int v) const {assert(prepared);return {this, indptr[v], indptr[v + 1]};}vc<int> deg_array() {if (vc_deg.empty()) calc_deg();return vc_deg;}pair<vc<int>, vc<int>> deg_array_inout() {if (vc_indeg.empty()) calc_deg_inout();return {vc_indeg, vc_outdeg};}int deg(int v) {if (vc_deg.empty()) calc_deg();return vc_deg[v];}int in_deg(int v) {if (vc_indeg.empty()) calc_deg_inout();return vc_indeg[v];}int out_deg(int v) {if (vc_outdeg.empty()) calc_deg_inout();return vc_outdeg[v];}#ifdef FASTIOvoid debug() {print("Graph");if (!prepared) {print("frm to cost id");for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);} else {print("indptr", indptr);print("frm to cost id");FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);}}#endifvc<int> new_idx;vc<bool> used_e;// G における頂点 V[i] が、新しいグラフで i になるようにする// {G, es}Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {if (len(new_idx) != N) new_idx.assign(N, -1);if (len(used_e) != M) used_e.assign(M, 0);int n = len(V);FOR(i, n) new_idx[V[i]] = i;Graph<T, directed> G(n);vc<int> history;FOR(i, n) {for (auto&& e: (*this)[V[i]]) {if (used_e[e.id]) continue;int a = e.frm, b = e.to;if (new_idx[a] != -1 && new_idx[b] != -1) {history.eb(e.id);used_e[e.id] = 1;int eid = (keep_eid ? e.id : -1);G.add(new_idx[a], new_idx[b], e.cost, eid);}}}FOR(i, n) new_idx[V[i]] = -1;for (auto&& eid: history) used_e[eid] = 0;G.build();return G;}private:void calc_deg() {assert(vc_deg.empty());vc_deg.resize(N);for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;}void calc_deg_inout() {assert(vc_indeg.empty());vc_indeg.resize(N);vc_outdeg.resize(N);for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }}};#line 2 "/home/maspy/compro/library/graph/bipartite_vertex_coloring.hpp"#line 2 "/home/maspy/compro/library/ds/unionfind/unionfind.hpp"struct UnionFind {int n, n_comp;vc<int> dat; // par or (-size)UnionFind(int n = 0) { build(n); }void build(int m) {n = m, n_comp = m;dat.assign(n, -1);}void reset() { build(n); }int operator[](int x) {while (dat[x] >= 0) {int pp = dat[dat[x]];if (pp < 0) { return dat[x]; }x = dat[x] = pp;}return x;}ll size(int x) {x = (*this)[x];return -dat[x];}bool merge(int x, int y) {x = (*this)[x], y = (*this)[y];if (x == y) return false;if (-dat[x] < -dat[y]) swap(x, y);dat[x] += dat[y], dat[y] = x, n_comp--;return true;}vc<int> get_all() {vc<int> A(n);FOR(i, n) A[i] = (*this)[i];return A;}};#line 5 "/home/maspy/compro/library/graph/bipartite_vertex_coloring.hpp"// 二部グラフでなかった場合には emptytemplate <typename GT>vc<int> bipartite_vertex_coloring(GT& G) {assert(!GT::is_directed);assert(G.is_prepared());int n = G.N;UnionFind uf(2 * n);for (auto&& e: G.edges) {int u = e.frm, v = e.to;uf.merge(u + n, v), uf.merge(u, v + n);}vc<int> color(2 * n, -1);FOR(v, n) if (uf[v] == v && color[uf[v]] < 0) {color[uf[v]] = 0;color[uf[v + n]] = 1;}FOR(v, n) color[v] = color[uf[v]];color.resize(n);FOR(v, n) if (uf[v] == uf[v + n]) return {};return color;}#line 3 "/home/maspy/compro/library/graph/strongly_connected_component.hpp"template <typename GT>pair<int, vc<int>> strongly_connected_component(GT& G) {static_assert(GT::is_directed);assert(G.is_prepared());int N = G.N;int C = 0;vc<int> comp(N), low(N), ord(N, -1), path;int now = 0;auto dfs = [&](auto& dfs, int v) -> void {low[v] = ord[v] = now++;path.eb(v);for (auto&& [frm, to, cost, id]: G[v]) {if (ord[to] == -1) {dfs(dfs, to), chmin(low[v], low[to]);} else {chmin(low[v], ord[to]);}}if (low[v] == ord[v]) {while (1) {int u = POP(path);ord[u] = N, comp[u] = C;if (u == v) break;}++C;}};FOR(v, N) {if (ord[v] == -1) dfs(dfs, v);}FOR(v, N) comp[v] = C - 1 - comp[v];return {C, comp};}template <typename GT>Graph<int, 1> scc_dag(GT& G, int C, vc<int>& comp) {Graph<int, 1> DAG(C);vvc<int> edges(C);for (auto&& e: G.edges) {int x = comp[e.frm], y = comp[e.to];if (x == y) continue;edges[x].eb(y);}FOR(c, C) {UNIQUE(edges[c]);for (auto&& to: edges[c]) DAG.add(c, to);}DAG.build();return DAG;}#line 4 "/home/maspy/compro/library/flow/bipartite.hpp"template <typename GT>struct BipartiteMatching {int N;GT& G;vc<int> color;vc<int> dist, match;vc<int> vis;BipartiteMatching(GT& G) : N(G.N), G(G), dist(G.N, -1), match(G.N, -1) {color = bipartite_vertex_coloring(G);if (N > 0) assert(!color.empty());while (1) {bfs();vis.assign(N, false);int flow = 0;FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;if (!flow) break;}}BipartiteMatching(GT& G, vc<int> color): N(G.N), G(G), color(color), dist(G.N, -1), match(G.N, -1) {while (1) {bfs();vis.assign(N, false);int flow = 0;FOR(v, N) if (!color[v] && match[v] == -1 && dfs(v))++ flow;if (!flow) break;}}void bfs() {dist.assign(N, -1);queue<int> que;FOR(v, N) if (!color[v] && match[v] == -1) que.emplace(v), dist[v] = 0;while (!que.empty()) {int v = que.front();que.pop();for (auto&& e: G[v]) {dist[e.to] = 0;int w = match[e.to];if (w != -1 && dist[w] == -1) dist[w] = dist[v] + 1, que.emplace(w);}}}bool dfs(int v) {vis[v] = 1;for (auto&& e: G[v]) {int w = match[e.to];if (w == -1 || (!vis[w] && dist[w] == dist[v] + 1 && dfs(w))) {match[e.to] = v, match[v] = e.to;return true;}}return false;}vc<pair<int, int>> matching() {vc<pair<int, int>> res;FOR(v, N) if (v < match[v]) res.eb(v, match[v]);return res;}vc<int> vertex_cover() {vc<int> res;FOR(v, N) if (color[v] ^ (dist[v] == -1)) { res.eb(v); }return res;}vc<int> independent_set() {vc<int> res;FOR(v, N) if (!(color[v] ^ (dist[v] == -1))) { res.eb(v); }return res;}vc<int> edge_cover() {vc<bool> done(N);vc<int> res;for (auto&& e: G.edges) {if (done[e.frm] || done[e.to]) continue;if (match[e.frm] == e.to) {res.eb(e.id);done[e.frm] = done[e.to] = 1;}}for (auto&& e: G.edges) {if (!done[e.frm]) {res.eb(e.id);done[e.frm] = 1;}if (!done[e.to]) {res.eb(e.id);done[e.to] = 1;}}sort(all(res));return res;}/* Dulmage–Mendelsohn decompositionhttps://en.wikipedia.org/wiki/Dulmage%E2%80%93Mendelsohn_decompositionhttp://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdfhttps://hitonanode.github.io/cplib-cpp/graph/dulmage_mendelsohn_decomposition.hpp.html- 最大マッチングとしてありうる iff 同じ W を持つ- 辺 uv が必ず使われる:同じ W を持つ辺が唯一- color=0 から 1 への辺:W[l] <= W[r]- color=0 の点が必ず使われる:W=1,2,...,K- color=1 の点が必ず使われる:W=0,1,...,K-1*/pair<int, vc<int>> DM_decomposition() {// 非飽和点からの探索vc<int> W(N, -1);vc<int> que;auto add = [&](int v, int x) -> void {if (W[v] == -1) {W[v] = x;que.eb(v);}};FOR(v, N) if (match[v] == -1 && color[v] == 0) add(v, 0);FOR(v, N) if (match[v] == -1 && color[v] == 1) add(v, infty<int>);while (len(que)) {auto v = POP(que);if (match[v] != -1) add(match[v], W[v]);if (color[v] == 0 && W[v] == 0) {for (auto&& e: G[v]) { add(e.to, W[v]); }}if (color[v] == 1 && W[v] == infty<int>) {for (auto&& e: G[v]) { add(e.to, W[v]); }}}// 残った点からなるグラフを作って強連結成分分解vc<int> V;FOR(v, N) if (W[v] == -1) V.eb(v);int n = len(V);Graph<bool, 1> DG(n);FOR(i, n) {int v = V[i];if (match[v] != -1) {int j = LB(V, match[v]);DG.add(i, j);}if (color[v] == 0) {for (auto&& e: G[v]) {if (W[e.to] != -1 || e.to == match[v]) continue;int j = LB(V, e.to);DG.add(i, j);}}}DG.build();auto [K, comp] = strongly_connected_component(DG);K += 1;// 答FOR(i, n) { W[V[i]] = 1 + comp[i]; }FOR(v, N) if (W[v] == infty<int>) W[v] = K;return {K, W};}#ifdef FASTIOvoid debug() {print("match", match);print("min vertex covor", vertex_cover());print("max indep set", independent_set());print("min edge cover", edge_cover());}#endif};#line 5 "main.cpp"void solve() {LL(N);vi X, Y;FOR(N) {LL(x, y);X.eb(x), Y.eb(y);}{auto I = argsort(Y);X = rearrange(X, I);Y = rearrange(Y, I);I = argsort(X);X = rearrange(X, I);Y = rearrange(Y, I);}set<pi> NG;FOR(i, N) NG.insert(mp(X[i], Y[i]));vc<tuple<int, int, int, int>> dat;FOR(j, N) FOR(i, j) {if (X[i] == X[j] && Y[j] == Y[i] + 2) {dat.eb(i, j, X[i] - 2, Y[i] + 1);dat.eb(i, j, X[i] + 2, Y[i] + 1);}if (Y[i] == Y[j] && X[j] == X[i] + 2) {dat.eb(i, j, X[i] + 1, Y[i] - 2);dat.eb(i, j, X[i] + 1, Y[i] + 2);}}int dx[] = {2, 1, -1, -2, -2, -1, 1, 2};int dy[] = {1, 2, 2, 1, -1, -2, -2, -1};ll n = len(dat);ll ANS = infty<ll>;auto dfs = [&](auto& dfs, int p, int rest, int get) -> void {if (N - get >= ANS) return;if (p == len(dat)) {// 残りを配置できるか判定vc<pi> V;FOR(i, N) {if (rest >> i & 1) {FOR(d, 8) {pi v = {X[i] + dx[d], Y[i] + dy[d]};if (NG.count(v)) continue;V.eb(v);}}}UNIQUE(V);ll n = len(V);Graph<int, 0> G(N + n);FOR(i, N) {if (rest >> i & 1) {FOR(d, 8) {pi v = {X[i] + dx[d], Y[i] + dy[d]};if (NG.count(v)) continue;int j = LB(V, v);G.add(i, N + j);}}}G.build();BipartiteMatching<decltype(G)> BM(G);ll k = len(BM.matching());if (popcnt(rest) != k) return;chmin(ANS, N - get);return;}auto [i, j, x, y] = dat[p];if ((rest >> i & 1) && (rest >> j & 1)) {pi v = {x, y};if (!NG.count(v)) {int r = rest ^ (1 << i) ^ (1 << j);NG.insert(v);dfs(dfs, p + 1, r, get + 1);NG.erase(v);}}dfs(dfs, p + 1, rest, get);};dfs(dfs, 0, (1 << N) - 1, 0);if (ANS == infty<ll>) ANS = -1;print(ANS);}signed main() {int T = 1;// INT(T);FOR(T) solve();return 0;}