結果
| 問題 |
No.2676 A Tourist
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2024-03-15 22:39:17 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 298 ms / 5,000 ms |
| コード長 | 8,120 bytes |
| コンパイル時間 | 1,591 ms |
| コンパイル使用メモリ | 142,568 KB |
| 実行使用メモリ | 27,568 KB |
| 最終ジャッジ日時 | 2024-09-30 02:06:32 |
| 合計ジャッジ時間 | 10,265 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 31 |
ソースコード
#include <iostream>
#include <vector>
using namespace std;
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define REP(i, n) FOR(i,0,n)
#include <atcoder/fenwicktree>
#include <algorithm>
#include <cassert>
#include <functional>
#include <queue>
#include <stack>
#include <utility>
#include <vector>
// Heavy-Light Decomposition of trees
// Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950
struct HeavyLightDecomposition {
int V;
int k;
int nb_heavy_path;
std::vector<std::vector<int>> e;
std::vector<int> par; // par[i] = parent of vertex i (Default: -1)
std::vector<int> depth; // depth[i] = distance between root and vertex i
std::vector<int> subtree_sz; // subtree_sz[i] = size of subtree whose root is i
std::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1)
std::vector<int> tree_id; // tree_id[i] = id of tree vertex i belongs to
std::vector<int> aligned_id,
aligned_id_inv; // aligned_id[i] = aligned id for vertex i (consecutive on heavy edges)
std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to root
std::vector<int> head_ids; // consist of head vertex id's
std::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i]
HeavyLightDecomposition(int sz = 0)
: V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz),
tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {}
void add_edge(int u, int v) {
e[u].emplace_back(v);
e[v].emplace_back(u);
}
void _build_dfs(int root) {
std::stack<std::pair<int, int>> st;
par[root] = -1;
depth[root] = 0;
st.emplace(root, 0);
while (!st.empty()) {
int now = st.top().first;
int &i = st.top().second;
if (i < (int)e[now].size()) {
int nxt = e[now][i++];
if (nxt == par[now]) continue;
par[nxt] = now;
depth[nxt] = depth[now] + 1;
st.emplace(nxt, 0);
} else {
st.pop();
int max_sub_sz = 0;
subtree_sz[now] = 1;
heavy_child[now] = -1;
for (auto nxt : e[now]) {
if (nxt == par[now]) continue;
subtree_sz[now] += subtree_sz[nxt];
if (max_sub_sz < subtree_sz[nxt])
max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt;
}
}
}
}
void _build_bfs(int root, int tree_id_now) {
std::queue<int> q({root});
while (!q.empty()) {
int h = q.front();
q.pop();
head_ids.emplace_back(h);
for (int now = h; now != -1; now = heavy_child[now]) {
tree_id[now] = tree_id_now;
aligned_id[now] = k++;
aligned_id_inv[aligned_id[now]] = now;
heavy_path_id[now] = nb_heavy_path;
head[now] = h;
for (int nxt : e[now])
if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt);
}
nb_heavy_path++;
}
}
void build(std::vector<int> roots = {0}) {
int tree_id_now = 0;
for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++);
}
template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const {
assert(int(data.size()) == V);
std::vector<T> ret;
ret.reserve(V);
for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]);
return ret;
}
// query for vertices on path [u, v] (INCLUSIVE)
void
for_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const {
while (true) {
if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]);
if (head[u] == head[v]) break;
v = par[head[v]];
}
}
void for_each_vertex_noncommutative(
int from, int to, const std::function<void(int ancestor, int descendant)> &fup,
const std::function<void(int ancestor, int descendant)> &fdown) const {
int u = from, v = to;
const int lca = lowest_common_ancestor(u, v), dlca = depth[lca];
while (u >= 0 and depth[u] > dlca) {
const int p = (depth[head[u]] > dlca ? head[u] : lca);
fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p];
}
static std::vector<std::pair<int, int>> lrs;
int sz = 0;
while (v >= 0 and depth[v] >= dlca) {
const int p = (depth[head[v]] >= dlca ? head[v] : lca);
if (int(lrs.size()) == sz) lrs.emplace_back(0, 0);
lrs.at(sz++) = {p, v}, v = par.at(p);
}
while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]);
}
// query for edges on path [u, v]
void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const {
while (true) {
if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
if (head[u] != head[v]) {
f(aligned_id[head[v]], aligned_id[v]);
v = par[head[v]];
} else {
if (u != v) f(aligned_id[u] + 1, aligned_id[v]);
break;
}
}
}
// lowest_common_ancestor: O(log V)
int lowest_common_ancestor(int u, int v) const {
assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
while (true) {
if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = par[head[v]];
}
}
int distance(int u, int v) const {
assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)];
}
// Level ancestor, O(log V)
// if k-th parent is out of range, return -1
int kth_parent(int v, int k) const {
if (k < 0) return -1;
while (v >= 0) {
int h = head.at(v), len = depth.at(v) - depth.at(h);
if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k);
k -= len + 1, v = par.at(h);
}
return -1;
}
// Jump on tree, O(log V)
int s_to_t_by_k_steps(int s, int t, int k) const {
if (k < 0) return -1;
if (k == 0) return s;
int lca = lowest_common_ancestor(s, t);
if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k);
return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k);
}
};
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int N, Q;
cin >> N >> Q;
vector<long long> A(N);
for (auto &a : A) cin >> a;
atcoder::fenwick_tree<long long> fw(N);
HeavyLightDecomposition hld(N);
REP(i, N - 1) {
int a, b;
cin >> a >> b;
--a, --b;
hld.add_edge(a, b);
}
const int root = 0;
hld.build({root});
REP(i, N) {
if (i != root) {
int p = hld.par.at(i);
fw.add(hld.aligned_id.at(p), A.at(i));
}
}
while (Q--) {
int tp;
cin >> tp;
if (tp == 0) {
int v, x;
cin >> v >> x;
--v;
A.at(v) += x;
if (v != root) fw.add(hld.aligned_id.at(hld.par.at(v)), x);
} else if (tp == 1) {
int u, v;
cin >> u >> v;
--u, --v;
const auto lca = hld.lowest_common_ancestor(u, v);
auto ret = A.at(lca);
if (lca != root) ret += A.at(hld.par.at(lca));
hld.for_each_vertex(u, v, [&](int a, int b) { ret += fw.sum(a, b + 1); });
cout << ret << '\n';
} else {
assert(false);
}
}
}
hitonanode