結果
問題 | No.2674 k-Walk on Bipartite |
ユーザー | Aeren |
提出日時 | 2024-03-15 22:41:43 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,953 bytes |
コンパイル時間 | 3,205 ms |
コンパイル使用メモリ | 270,968 KB |
実行使用メモリ | 45,364 KB |
最終ジャッジ日時 | 2024-09-30 02:09:23 |
合計ジャッジ時間 | 6,535 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 125 ms
39,624 KB |
testcase_08 | WA | - |
testcase_09 | AC | 100 ms
39,756 KB |
testcase_10 | WA | - |
testcase_11 | AC | 104 ms
30,948 KB |
testcase_12 | AC | 127 ms
29,044 KB |
testcase_13 | AC | 95 ms
34,576 KB |
testcase_14 | AC | 40 ms
29,048 KB |
testcase_15 | AC | 187 ms
39,716 KB |
testcase_16 | WA | - |
testcase_17 | AC | 120 ms
29,600 KB |
testcase_18 | AC | 57 ms
25,956 KB |
testcase_19 | AC | 128 ms
35,572 KB |
testcase_20 | AC | 117 ms
37,980 KB |
testcase_21 | AC | 141 ms
32,484 KB |
testcase_22 | AC | 240 ms
45,364 KB |
testcase_23 | AC | 2 ms
6,816 KB |
testcase_24 | AC | 1 ms
6,816 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,820 KB |
testcase_28 | AC | 1 ms
6,820 KB |
testcase_29 | AC | 1 ms
6,816 KB |
testcase_30 | AC | 2 ms
6,820 KB |
testcase_31 | AC | 1 ms
6,820 KB |
testcase_32 | AC | 1 ms
6,816 KB |
testcase_33 | AC | 2 ms
6,816 KB |
testcase_34 | AC | 2 ms
6,820 KB |
testcase_35 | AC | 2 ms
6,820 KB |
testcase_36 | AC | 1 ms
6,816 KB |
testcase_37 | AC | 2 ms
6,816 KB |
testcase_38 | AC | 2 ms
6,816 KB |
ソースコード
// #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif template<bool Enable_small_to_large = true> struct disjoint_set{ int n, _group_count; vector<int> p; vector<list<int>> group; disjoint_set(){ } disjoint_set(int n): n(n), _group_count(n), p(n, -1), group(n){ assert(n >= 0); for(auto i = 0; i < n; ++ i) group[i] = {i}; } int make_set(){ p.push_back(-1); group.push_back(list<int>{p}); ++ _group_count; return n ++; } int root(int u){ return p[u] < 0 ? u : p[u] = root(p[u]); } bool share(int a, int b){ return root(a) == root(b); } int size(int u){ return -p[root(u)]; } bool merge(int u, int v){ u = root(u), v = root(v); if(u == v) return false; -- _group_count; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v); p[u] += p[v], p[v] = u; group[u].splice(group[u].end(), group[v]); return true; } bool merge(int u, int v, auto act){ u = root(u), v = root(v); if(u == v) return false; -- _group_count; bool swapped = false; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true; p[u] += p[v], p[v] = u; group[u].splice(group[u].end(), group[v]); act(u, v, swapped); return true; } int group_count() const{ return _group_count; } const list<int> &group_of(int u){ return group[root(u)]; } vector<vector<int>> group_up(){ vector<vector<int>> g(n); for(auto i = 0; i < n; ++ i) g[root(i)].push_back(i); g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end()); return g; } void clear(){ _group_count = n; fill(p.begin(), p.end(), -1); for(auto i = 0; i < n; ++ i) group[i] = {i}; } friend ostream &operator<<(ostream &out, disjoint_set dsu){ auto gs = dsu.group_up(); out << "{"; if(!gs.empty()) for(auto i = 0; i < (int)gs.size(); ++ i){ out << "{"; for(auto j = 0; j < (int)gs[i].size(); ++ j){ out << gs[i][j]; if(j + 1 < (int)gs[i].size()) out << ", "; } out << "}"; if(i + 1 < (int)gs.size()) out << ", "; } return out << "}"; } }; template<class T> struct graph{ using Weight_t = T; struct Edge_t{ int from, to; T cost; }; int n; vector<Edge_t> edge; vector<vector<int>> adj; function<bool(int)> ignore; graph(int n = 1): n(n), adj(n){ assert(n >= 1); } graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v); } else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v); } graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w); } else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w); } graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v); } graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w); } int operator()(int u, int id) const{ #ifdef LOCAL assert(0 <= id && id < (int)edge.size()); assert(edge[id].from == u || edge[id].to == u); #endif return u ^ edge[id].from ^ edge[id].to; } int link(int u, int v, T w = {}){ // insert an undirected edge int id = (int)edge.size(); adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w}); return id; } int orient(int u, int v, T w = {}){ // insert a directed edge int id = (int)edge.size(); adj[u].push_back(id), edge.push_back({u, v, w}); return id; } void clear(){ for(auto [u, v, w]: edge){ adj[u].clear(); adj[v].clear(); } edge.clear(); ignore = {}; } graph transposed() const{ // the transpose of the directed graph graph res(n); for(auto &e: edge) res.orient(e.to, e.from, e.cost); res.ignore = ignore; return res; } int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule) return (int)adj[u].size(); } // The adjacency list is sorted for each vertex. vector<vector<int>> get_adjacency_list() const{ vector<vector<int>> res(n); for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){ if(ignore && ignore(id)) continue; res[(*this)(u, id)].push_back(u); } return res; } void set_ignoration_rule(const function<bool(int)> &f){ ignore = f; } void reset_ignoration_rule(){ ignore = nullptr; } friend ostream &operator<<(ostream &out, const graph &g){ for(auto id = 0; id < (int)g.edge.size(); ++ id){ if(g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n"; } return out; } }; // Requires graph template<class T> struct bfs_forest{ int n; T base_dist; vector<T> dist; vector<int> pv; vector<int> pe; vector<int> order; vector<int> pos; vector<int> size; vector<int> root_of; vector<int> root; vector<int> depth; vector<int> was; bfs_forest(T base_dist = 0): base_dist(base_dist){ } void init(int n){ this->n = n; pv.assign(n, -1); pe.assign(n, -1); order.clear(); pos.assign(n, -1); size.assign(n, -1); root_of.assign(n, -1); root.clear(); depth.assign(n, -1); dist.assign(n, base_dist); was.assign(n, -2); attempt = -1; } int attempt; vector<int> q; // O(# of nodes reachable from src) template<class F = plus<>> void _bfs(const graph<T> &g, const vector<int> &src, F UT = plus<>()){ q = src; for(auto u: src){ assert(was[u] != attempt); was[u] = attempt; depth[u] = 0; dist[u] = base_dist; root_of[u] = u; root.push_back(u); pv[u] = -1; pe[u] = -1; } int init_size = (int)order.size(); for(auto it = 0; it < (int)q.size(); ++ it){ int u = q[it]; pos[u] = (int)order.size(); order.push_back(u); size[u] = 1; for(auto id: g.adj[u]){ if(g.ignore && g.ignore(id)) continue; int v = g(u, id); if(was[v] == attempt) continue; was[v] = attempt; depth[v] = depth[u] + 1; dist[v] = UT(g.edge[id].cost, dist[u]); pv[v] = u; pe[v] = id; root_of[v] = root_of[u]; q.push_back(v); } } for(auto i = (int)order.size() - 1; i >= init_size; -- i){ int u = order[i]; for(auto id: g.adj[u]){ if(g.ignore && g.ignore(id)) continue; if(~pv[u]) size[pv[u]] += size[u]; } } q.clear(); } // O(# of nodes reachable from src) template<class F = plus<>> void bfs(const graph<T> &g, const vector<int> &src, F UT = plus<>()){ assert(g.n <= n); root.clear(), order.clear(); for(auto u: src) assert(0 <= u && u < g.n); ++ attempt; _bfs(g, src, UT); } // O(n + m) template<class U, class F = plus<>> void bfs_all(const graph<U> &g, F UT = plus<>()){ assert(g.n <= n); root.clear(), order.clear(); ++ attempt; for(auto u = 0; u < g.n; ++ u) if(was[u] != attempt) _bfs(g, {u}, UT); } // Check if u is visited during the last bfs-like call. bool visited(int u) const{ assert(0 <= u && u < n); return was[u] == attempt; } vector<int> get_path(int u, int v) const{ assert(visited(u) && visited(v) && root_of[u] == root_of[v]); vector<int> left, right; while(u != v){ if(depth[u] >= depth[v]){ left.push_back(u); u = pv[u]; } else{ right.push_back(v); v = pv[v]; } } left.push_back(u); left.insert(left.end(), right.rbegin(), right.rend()); return left; } }; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n, m, from, to, len; cin >> n >> m >> from >> to >> len, -- from, -- to; auto _f = [&](string s)->void{ cout << s << endl; exit(0); }; auto yes = [&]()->void{ _f("Yes"); }; auto no = [&]()->void{ _f("No"); }; auto unknown = [&]()->void{ _f("Unknown"); }; disjoint_set dsu(n << 1); graph<int> g(n); for(auto i = 0; i < m; ++ i){ int u, v; cin >> u >> v, -- u, -- v; dsu.merge(u << 1, v << 1 | 1); dsu.merge(u << 1 | 1, v << 1); g.link(u, v); } bfs_forest<int> bf; bf.init(n); bf.bfs(g, {from}); if(from == to){ if(len & 1){ no(); } bf.size[from] >= 2 ? yes() : unknown(); } if(n == 1){ no(); } if(n == 2){ if(from == to){ if(len & 1){ no(); } bf.size[from] >= 2 ? yes() : unknown(); } else{ if(~len & 1){ no(); } bf.size[from] >= 2 ? yes() : unknown(); } } if(dsu.share(from << 1, to << 1)){ if(len & 1){ no(); } bf.depth[to] == len || bf.depth[to] < len && bf.size[from] >= 2 ? yes() : unknown(); } else if(dsu.share(from << 1, to << 1 | 1)){ if(~len & 1){ no(); } bf.depth[to] == len || bf.depth[to] < len && bf.size[from] >= 2 ? yes() : unknown(); } else{ unknown(); } return 0; } /* */