結果

問題 No.2676 A Tourist
ユーザー siganaisiganai
提出日時 2024-03-15 23:02:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3,015 ms / 5,000 ms
コード長 16,912 bytes
コンパイル時間 3,376 ms
コンパイル使用メモリ 232,124 KB
実行使用メモリ 62,276 KB
最終ジャッジ日時 2024-09-30 02:37:11
合計ジャッジ時間 17,990 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 182 ms
19,328 KB
testcase_02 AC 647 ms
48,096 KB
testcase_03 AC 330 ms
48,256 KB
testcase_04 AC 419 ms
48,128 KB
testcase_05 AC 476 ms
48,128 KB
testcase_06 AC 122 ms
19,820 KB
testcase_07 AC 393 ms
49,092 KB
testcase_08 AC 144 ms
48,992 KB
testcase_09 AC 329 ms
48,908 KB
testcase_10 AC 169 ms
48,944 KB
testcase_11 AC 538 ms
45,652 KB
testcase_12 AC 122 ms
24,112 KB
testcase_13 AC 433 ms
62,276 KB
testcase_14 AC 289 ms
62,196 KB
testcase_15 AC 364 ms
62,224 KB
testcase_16 AC 181 ms
19,548 KB
testcase_17 AC 748 ms
48,284 KB
testcase_18 AC 324 ms
48,296 KB
testcase_19 AC 648 ms
48,352 KB
testcase_20 AC 629 ms
48,252 KB
testcase_21 AC 33 ms
6,820 KB
testcase_22 AC 38 ms
6,816 KB
testcase_23 AC 19 ms
6,816 KB
testcase_24 AC 38 ms
6,820 KB
testcase_25 AC 8 ms
6,816 KB
testcase_26 AC 2 ms
6,820 KB
testcase_27 AC 82 ms
19,740 KB
testcase_28 AC 275 ms
48,940 KB
testcase_29 AC 150 ms
48,932 KB
testcase_30 AC 238 ms
48,984 KB
testcase_31 AC 232 ms
48,992 KB
testcase_32 AC 3,015 ms
62,244 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test.cpp"
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} 
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }

#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};

constexpr int mod = 998244353;
//constexpr int mod = 1000000007;
#line 2 "library/graph/graph-template.hpp"
template <typename T> 
struct Edge {
	int from, to;
	T cost;
	Edge() = default;
	Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {}
	Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
	bool operator < (const Edge &a) const { return cost < a.cost; }
	bool operator > (const Edge &a) const { return cost > a.cost; }
    Edge &operator = (const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
    friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; }
};
 
template <typename T>
using Edges = vector<Edge<T>>;
template <typename T>
using Wgraph = vector<Edges<T>>;
using Ugraph = vector<vector<int>>;
Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) {
    Ugraph g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        cin >> a >> b;
        a -= origin, b -= origin;
        g[a].push_back(b);
        if(!is_directed) g[b].push_back(a);
    }
    return g;
}
template <typename T>
Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) {
    Wgraph<T> g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        T c;
        cin >> a >> b >> c;
        a -= origin, b -= origin;
        g[a].emplace_back(b,c);
        if(!is_directed) g[b].emplace_back(a,c);
    }
    return g;
}
#line 3 "library/tree/HLD.hpp"
template <typename G>
struct HLD {
    private:
    void dfs_sz(int cur) {
        size[cur] = 1;
        for (auto &dst:g[cur]) {
            if (dst == par[cur]) {
                if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
                swap(g[cur][0],g[cur][1]);
                else continue;
            }
            depth[dst] = depth[cur] + 1;
            par[dst] = cur;
            dfs_sz(dst);
            size[cur] += size[dst];
            if (size[dst] > size[g[cur][0]]) {
                swap(dst,g[cur][0]);
            }
        }
    }
    void dfs_hld(int cur) {
        down[cur] = id++;
        for (auto dst:g[cur]) {
        if (dst == par[cur]) continue;
            nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
            dfs_hld(dst);
        }
        up[cur] = id;
    }
    public:
  // [u, v)
    vector<pair<int,int>> ascend(int u,int v) const {
        vector<pair<int,int>> res;
        while (nxt[u] != nxt[v]) {
            res.emplace_back(down[u],down[nxt[u]]);
            u = par[nxt[u]];
        }
        if (u != v) res.emplace_back(down[u],down[v] + 1);
        return res;
    }
  // (u, v]
    vector<pair<int,int>> descend(int u,int v) const {
        if (u == v) return {};
        if (nxt[u] == nxt[v]) return {{down[u] + 1,down[v]}};
        auto res = descend(u,par[nxt[v]]);
        res.emplace_back(down[nxt[v]],down[v]);
        return res;
    }
    G& g;
    int id;
    vector<int> size,depth,down,up,nxt,par;
    HLD(G& _g,int root = 0)
        : g(_g),
            id(0),
            size(g.size(),0),
            depth(g.size(),0),
            down(g.size(),-1),
            up(g.size(),-1),
            nxt(g.size(),root),
            par(g.size(),root) {
        dfs_sz(root);
        dfs_hld(root);
    }
    void build(int root) {
        dfs_sz(root);
        dfs_hld(root);
    }
    pair<int,int> idx(int i) const {return make_pair(down[i], up[i]);}
    template <typename F>
    void path_query(int u,int v,bool vertex,const F& f) {
        int l = lca(u,v);
        for (auto &&[a,b] : ascend(u,l)) {
            int s = a + 1, t = b;
            s > t ? f(t,s) : f(s,t);
        }
        if (vertex) f(down[l], down[l] + 1);
        for (auto &&[a,b] : descend(l,v)) {
            int s = a,t = b + 1;
            s > t ? f(t,s) : f(s,t);
        }
    }
    template <typename F>
    void path_noncommutative_query(int u,int v,bool vertex,const F& f) {
        int l = lca(u,v);
        for(auto &&[a,b]:ascend(u,l)) f(a + 1,b);
        if(vertex) f(down[l],down[l] + 1);
        for(auto &&[a,b]:descend(l,v)) f(a,b + 1);
    }
    template <typename F>
    void subtree_query(int u,bool vertex,const F& f) {
        f(down[u] + int(!vertex), up[u]);
    }
    int lca(int a,int b) {
        while (nxt[a] != nxt[b]) {
            if (down[a] < down[b]) swap(a, b);
            a = par[nxt[a]];
        }
        return depth[a] < depth[b] ? a : b;
    }
    int dist(int a,int b) {return depth[a] + depth[b] - depth[lca(a, b)] * 2;}
};
#line 2 "library/segtree/segtree.hpp"
template <typename T, typename OP>
struct segtree {
    int N;
    int size;
    vector<T> seg;
    const OP op;
    const T I;
    segtree(OP _op, const T &I_) : N(0), size(0), op(_op), I(I_) {}
    segtree(int _N, OP _op, const T &I_) : op(_op), I(I_) { init(_N); }
    segtree(const vector<T> &v, OP _op, T I_) : op(_op), I(I_) {
        init(v.size());
        for (int i = 0; i < (int)v.size(); i++) {
            seg[i + size] = v[i];
        }
        build();
    }
    void init(int _N) {
        N = _N;
        size = 1;
        while (size < N) size <<= 1;
        seg.assign(2 * size, I);
    }
    void build() {
        for (int k = size - 1; k > 0; k--) {
            seg[k] = op(seg[2 * k], seg[2 * k + 1]);
        }
    }
    void set(int p, T x) {
        assert(0 <= p && p < N);
        p += size;
        seg[p] = x;
        while (p >>= 1) {
            seg[p] = op(seg[2 * p], seg[2 * p + 1]);
        }
    }
    void add(int p, T x) {
        assert(0 <= p && p < N);
        p += size;
        seg[p] += x;
        while (p >>= 1) {
            seg[p] = op(seg[2 * p], seg[2 * p + 1]);
        }
    }
    T get(int p) const {
        assert(0 <= p && p < N);
        return seg[p + size];
    }
    // query to [l, r)
    T prod(int l, int r) {
        assert(0 <= l && l <= r && r <= N);
        T L = I, R = I;
        for (l += size, r += size; l < r; l >>= 1, r >>= 1) {
            if (l & 1) L = op(L, seg[l++]);
            if (r & 1) R = op(seg[--r], R);
        }
        return op(L, R);
    }
    T all_prod() {return seg[1];}
    // check(a[l] * ...  * a[r-1]) が true となる最大の r
    // (右端まですべて true なら N を返す)
    template <class C>
    int max_right(int l, C check) {
        assert(0 <= l && l <= N);
        assert(check(I) == true);
        if (l == N) return N;
        l += size;
        T sm = I;
        do {
            while (l % 2 == 0) l >>= 1;
            if (!check(op(sm, seg[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (check(op(sm, seg[l]))) {
                        sm = op(sm, seg[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, seg[l]);
            l++;
        } while ((l & -l) != l);
        return N;
    }
    // check(a[l] * ... * a[r-1]) が true となる最小の l
    // (左端まで true なら 0 を返す)
    template <typename C>
    int min_left(int r, C check) {
        assert(0 <= r && r <= N);
        assert(check(I) == true);
        if (r == 0) return 0;
        r += size;
        T sm = I;
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!check(op(seg[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (check(op(seg[r], sm))) {
                        sm = op(seg[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(seg[r], sm);
        } while ((r & -r) != r);
        return 0;
    }
};
#line 3 "library/tree/tree-query.hpp"
//1<<20頂点まで
template <typename G>
struct Tree {
    G& g;
    int root;
    vector<array<int, 20>> bl;
    vector<int> dp;
    void build() {
        bl.resize(g.size());
        dp.resize(g.size());
        for (auto &v:bl) fill(begin(v),end(v),-1);
        dfs(root, -1, 0);
    }
    void dfs(int c, int p, int _dp) {
        dp[c] = _dp;
        for (int i = p, x = 0; i != -1;) {
            bl[c][x] = i;
            i = bl[i][x], x++;
        }
        for (auto& d : g[c]) {
            if (d == p) continue;
            dfs(d, c, _dp + 1);
        }
    }
    public:
    Tree(G& _g, int _r = 0) : g(_g), root(_r) { build(); }
    int depth(int u) const { return dp[u]; }
    int par(int u) const { return u == root ? -1 : bl[u][0]; }
    int kth_ancestor(int u, int k) const {
        if (dp[u] < k) return -1;
        while (k) {
        int t = __builtin_ctz(k);
        u = bl[u][t], k ^= 1 << t;
        }
        return u;
    }
    int nxt(int s, int t) const {
        if (dp[s] >= dp[t]) return par(s);
        int u = kth_ancestor(t, dp[t] - dp[s] - 1);
        return bl[u][0] == s ? u : bl[s][0];
    }
    vector<int> path(int s, int t) const {
        vector<int> pre, suf;
        while (dp[s] > dp[t]) {
            pre.push_back(s);
            s = bl[s][0];
        }
        while (dp[s] < dp[t]) {
            suf.push_back(t);
            t = bl[t][0];
        }
        while (s != t) {
            pre.push_back(s);
            suf.push_back(t);
            s = bl[s][0];
            t = bl[t][0];
        }
        pre.push_back(s);
        reverse(begin(suf), end(suf));
        copy(begin(suf), end(suf), back_inserter(pre));
        return pre;
    }
    int lca(int u, int v) {
        if (dp[u] != dp[v]) {
            if (dp[u] > dp[v]) swap(u, v);
            v = kth_ancestor(v, dp[v] - dp[u]);
        }
        if (u == v) return u;
        for (int i = __lg(dp[u]); i >= 0; --i) {
            if (dp[u] < (1 << i)) continue;
            if (bl[u][i] != bl[v][i]) u = bl[u][i], v = bl[v][i];
        }
        return bl[u][0];
    }
    //st-gl間より長い距離をjumpしようとすると-1が返ってくる
    int jump(int st,int gl,int distance) const {
        int ancestor = lca(st,gl);
        int path_distance = dp[st] + dp[gl] - 2 * dp[ancestor];
        if(path_distance < distance) return -1;
        if(dp[st] - dp[ancestor] >= distance) return kth_ancestor(st,distance);
        return kth_ancestor(gl,path_distance - distance);
    }
};
#line 92 "test.cpp"
using T = ll;
T op(T x,T y) {return x + y;}
T e() {return 0;}
int main() {
    INT(n,q);
    VEC(ll,a,n);
    vvi g(n);
    rep(i,n-1) {
        INT(u,v);
        u--,v--;
        g[u].emplace_back(v);
        g[v].emplace_back(u);
    }
    HLD<vvi> hld(g);
    Tree<vvi> tree(g);
    vl init(n),init2(n);
    rep(i,n) init[hld.idx(i).first] = a[i];
    segtree<ll,decltype(&op)> seg(init,op,e());
    ll su = 0;
    auto f = [&](int u,int v) {
        su -= seg.prod(u,v);
    };
    int sq = sqrt(n);
    vi chk;
    rep(i,n) {
        if(g[i].size() >= sq) {
            chk.emplace_back(i);
        }
        else {
            for(auto &j:g[i]) {
                init2[hld.idx(j).first] += a[i];
            }      
        }
    }
    segtree<ll,decltype(&op)> seg2(init2,op,e());
    auto f2 = [&](int u,int v) {
        su += seg2.prod(u,v);
    };
    debug(sq);
    debug(chk);
    rep(i,q) {
        INT(cmd);
        if(cmd == 0) {
            INT(v,x);
            v--;
            seg.add(hld.idx(v).first,x);
            if(g[v].size() < sq) {
                for(auto &j:g[v]) {
                    seg2.add(hld.idx(j).first,x);
                }
            }
            a[v] += x;
        }
        else {
            INT(u,v);
            u--,v--;
            su = 0;
            hld.path_query(u,v,true,f);
            debug(su);
            hld.path_query(u,v,true,f2);
            su += a[u] + a[v];
            debug(u,v,su);
            int lc = tree.lca(u,v);
            for(auto &x:chk) {
                if(x == u || x == v) {
                    su += a[x];
                }
                else {
                    int lcu = tree.lca(u,x);
                    int lcv = tree.lca(v,x);
                    if(lcu == x || lcv == x) {
                        if(tree.depth(lc) <= tree.depth(x)) {
                            su += 2 * a[x];
                        }
                        else if(tree.depth(lc) - 1 == tree.depth(x)) {
                            su += a[x];
                        }
                    }
                    else {
                        if(tree.depth(lcu) < tree.depth(lcv)) {
                            swap(lcu,lcv);
                        }
                        if(tree.depth(lcu) >= tree.depth(lc)) {
                            if(tree.depth(lcu) + 1 == tree.depth(x)) {
                                su += a[x];
                            }
                        }
                    }
                }
            }
            cout << su << '\n';
        }
    }
}  
0