結果
問題 | No.2674 k-Walk on Bipartite |
ユーザー | coindarw |
提出日時 | 2024-03-15 23:03:26 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 121 ms / 2,000 ms |
コード長 | 8,685 bytes |
コンパイル時間 | 5,598 ms |
コンパイル使用メモリ | 319,456 KB |
実行使用メモリ | 20,992 KB |
最終ジャッジ日時 | 2024-09-30 02:37:53 |
合計ジャッジ時間 | 7,117 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 59 ms
15,104 KB |
testcase_08 | AC | 79 ms
16,384 KB |
testcase_09 | AC | 45 ms
14,848 KB |
testcase_10 | AC | 98 ms
18,944 KB |
testcase_11 | AC | 59 ms
13,952 KB |
testcase_12 | AC | 89 ms
18,236 KB |
testcase_13 | AC | 41 ms
13,440 KB |
testcase_14 | AC | 14 ms
10,372 KB |
testcase_15 | AC | 108 ms
20,348 KB |
testcase_16 | AC | 70 ms
16,256 KB |
testcase_17 | AC | 72 ms
15,744 KB |
testcase_18 | AC | 26 ms
10,368 KB |
testcase_19 | AC | 50 ms
14,832 KB |
testcase_20 | AC | 45 ms
14,464 KB |
testcase_21 | AC | 82 ms
16,896 KB |
testcase_22 | AC | 121 ms
20,992 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 1 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 1 ms
5,248 KB |
testcase_28 | AC | 1 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 1 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 1 ms
5,248 KB |
testcase_37 | AC | 1 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
ソースコード
#ifdef ONLINE_JUDGE #include <bits/stdc++.h> #include <atcoder/all> #else #include <mylibs/all.h> #endif using ll = long long; using lll = __int128_t; #define rep(i, n) for (int i = 0, i##_len = (n); i < i##_len; ++i) #define reps(i, n) for (int i = 1, i##_len = (n); i <= i##_len; ++i) #define rrep(i, n) for (int i = ((int)(n)-1); i >= 0; --i) #define rreps(i, n) for (int i = ((int)(n)); i > 0; --i) #define rep2(i, s, n) for (int i = (s); i < (int)(n); i++) #define repc2(i, s, n) for (int i = (s); i <= (int)(n); i++) #define length(v) ((int)(v).size()) constexpr int inf = 2'000'000'000; constexpr ll linf = 4'000'000'000'000'000'000, M7 = 1'000'000'007, M9 = 998'244'353; #define all(v) begin(v), end(v) #define rall(v) rbegin(v), rend(v) using namespace std; using namespace atcoder; // clang-format off #define Vec(type, ...) __make_vec<type>(__VA_ARGS__) template <class T> vector<T> __make_vec(size_t a) {return vector<T>(a);}template <class T, class... Ts> auto __make_vec(size_t a, Ts... ts) {return vector<decltype(__make_vec<T>(ts...))>(a, __make_vec<T>(ts...));} #define VecI(init, type, ...) __make_vecI<type, init>(__VA_ARGS__) template <class T, T init>vector<T> __make_vecI(size_t a) {return vector<T>(a, init);} template <class T, T init, class... Ts> auto __make_vecI(size_t a, Ts... ts) {return vector<decltype(__make_vecI<T, init>(ts...))>(a, __make_vecI<T, init>(ts...));} template <typename T, typename U>inline ostream& operator<<(ostream& os, const pair<T, U>& p) noexcept {return os << p.first << " " << p.second;} inline ostream& operator<<(ostream& os, const modint& m) noexcept { return os << m.val(); } template <int M>inline ostream& operator<<(ostream& os, const static_modint<M>& m) noexcept { return os << m.val(); } template <typename T> struct is_static_modint : std::false_type {}; template <int MOD> struct is_static_modint<static_modint<MOD>> : std::true_type {}; template <template <typename...> typename C, typename Number>concept MyContainer = std::is_same_v<C<Number>, std::vector<Number>> || std::is_same_v<C<Number>, std::deque<Number>> || std::is_same_v<C<Number>, std::set<Number>> || std::is_same_v<C<Number>, std::unordered_set<Number>> || std::is_same_v<C<Number>, std::unordered_multiset<Number>> || std::is_same_v<C<Number>, std::multiset<Number>>; template <typename Number>concept MyNumber = std::is_same_v<Number, int> || std::is_same_v<Number, ll> || std::is_same_v<Number, char> || std::is_same_v<Number, modint> || is_static_modint<Number>::value; template <template <typename...> typename C, typename Number>concept MyContainerNumber = MyContainer<C, Number> && MyNumber<Number>; template <template <typename...> typename OutCon, template <typename...> typename InCon, typename Number>concept MyNestedContainerNumber = MyContainer<OutCon, InCon<Number>> && MyContainerNumber<InCon, Number>; template <template <typename...> typename C, typename Number>requires MyContainerNumber<C, Number>std::ostream& operator<<(std::ostream& os, const C<Number>& t) {auto itr = t.begin();auto end = t.end();if (itr != end) {os << *itr++;for (; itr != end; ++itr) os << ' ' << *itr;}return os;} template <template <typename...> typename OutCon, template <typename...> typename InCon, typename Number>requires MyNestedContainerNumber<OutCon, InCon, Number>std::ostream& operator<<(std::ostream& os, const OutCon<InCon<Number>>& t) {auto itr = t.begin();auto end = t.end();if (itr != end) {os << *itr++;for (; itr != end; ++itr) os << '\n' << *itr;}return os;} template <typename T, typename U>istream& operator>>(istream& is, pair<T, U>& p) {return is >> p.first >> p.second;} template <typename T>istream& operator>>(istream& is, vector<T>& v) {for (auto& e : v) is >> e;return is;} void inp() {} template <typename T, typename... Args>void inp(T& a, Args&... args) {cin >> a, inp(args...);} template <typename T>void inp1(vector<T>& v, int offset = 1, int len = -1) {if (len == -1) len = int(v.size()) - offset;assert(offset >= 0 && len >= 0);for (int i = offset; i < offset + len; ++i) cin >> v[i];} template <typename T>void oup(const T& a) {cout << a << "\n";} template <typename T, typename... Args>void oup(const T& a, const Args&... args) {cout << a << " ", oup(args...);} inline string YESNO(bool cond) { return cond ? "YES" : "NO"; }inline string yesno(bool cond) { return cond ? "yes" : "no"; }inline string YesNo(bool cond) { return cond ? "Yes" : "No"; } inline auto add1(auto vec, ll offset = 1) {for (auto& e : vec) e += offset;return vec;} #ifdef ONLINE_JUDGE #define debug(...) #else #define debug(...) cerr << "<" << #__VA_ARGS__ << ">: ", debug_out(__VA_ARGS__) template <typename T>void debug_out(T t) {cerr << t << "\n";} template <typename T, typename... Args>void debug_out(T t, Args... args) {cerr << t << ", ";debug_out(args...);} #endif #ifdef ONLINE_JUDGE #define todo(...) static_assert(false) #else #define todo(...) #endif // clang-format on int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, m; inp(n, m); int s, t, k; inp(s, t, k); struct edge { int to; edge(int to) : to(to) {} }; vector<vector<edge>> G(n); s--, t--; rep(i, m) { int a, b; inp(a, b); a--, b--; G[a].emplace_back(b); G[b].emplace_back(a); } vector<int> col(n, -1); vector<bool> seen(n); vector<int> num(n * 2); auto dfs = [&](auto dfs, int u) -> void { seen.at(u) = true; num.at(col.at(u))++; for (const auto& e : G.at(u)) { if (seen.at(e.to)) { assert(col.at(e.to) != col.at(u)); continue; } col.at(e.to) = col.at(u) ^ 1; dfs(dfs, e.to); } }; int acc = 0; rep(i, n) { if (seen.at(i)) continue; col.at(i) = acc; dfs(dfs, i); acc += 2; } auto dijkstra = [&](int ip) { using P = pair<ll, int>; priority_queue<P, vector<P>, greater<P>> pq; vector<ll> dist(G.size(), linf); dist.at(ip) = 0; pq.emplace(0ll, ip); while (!pq.empty()) { auto u = pq.top(); auto [curDist, curPos] = u; pq.pop(); if (curDist > dist.at(curPos)) continue; for (const auto& eg : G.at(curPos)) { if (dist.at(eg.to) > dist.at(curPos) + 1) { dist.at(eg.to) = dist.at(curPos) + 1; pq.emplace(dist.at(eg.to), eg.to); } } } return dist; }; auto distS = dijkstra(s); if (col.at(s) == col.at(t)) { // 連結かつ同じ部集合 // 偶数長が確定 if (k % 2 != 0) { oup("No"); } else { if (s == t) { if (G[s].size() > 0) { // s==tの場合は連結成分の大きさが2以上でないと駄目 oup("Yes"); } else { // s==tかつ連結成分の大きさが1の時,ほかの連結成分とつながることができるか if (n == 1) { oup("No"); } else { oup("Unknown"); } } } else if (distS.at(t) <= k) { // kが最短経路以上→適当に偶数回消費すればいい oup("Yes"); } else { // ちょうどいい箇所に辺が必要,s!=tより適当に同じ成分の別の部集合とつなげば任意の偶数がOK oup("Unknown"); } } } else if (col.at(s) / 2 == col.at(t) / 2) { // 連結かつ異なる部集合 // 奇数長が確定 if (k % 2 == 0) { oup("No"); } else { if (distS.at(t) <= k) { // kが最短経路以上→適当に偶数回消費すればいい oup("Yes"); } else { // ちょうどいい箇所に辺が必要, s,tを直接つなげば1以上の任意の奇数がOK oup("Unknown"); } } } else { // 連結でない // s,tを直接つなげば任意の奇数がOK // kが偶数の場合はs,tどちらともつながっていないところを経由するか,sの隣接頂点とtを繋ぐか,tの隣接頂点とsを繋ぐか // kが偶数かつ,連結成分数が2かつ,sにもtにも隣接頂点が存在しない場合はNo // つまりkが偶数かつN=2,M=0の場合はNo if (k % 2 != 0 || G[s].size() > 0 || G[t].size() > 0) { oup("Unknown"); } else { oup("No"); } } return 0; }