結果
問題 | No.2674 k-Walk on Bipartite |
ユーザー | umimel |
提出日時 | 2024-03-15 23:09:08 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,693 bytes |
コンパイル時間 | 1,945 ms |
コンパイル使用メモリ | 183,092 KB |
実行使用メモリ | 35,712 KB |
最終ジャッジ日時 | 2024-09-30 02:43:48 |
合計ジャッジ時間 | 5,124 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 116 ms
27,136 KB |
testcase_08 | AC | 146 ms
28,288 KB |
testcase_09 | AC | 62 ms
14,848 KB |
testcase_10 | AC | 190 ms
33,536 KB |
testcase_11 | AC | 66 ms
14,336 KB |
testcase_12 | AC | 183 ms
33,288 KB |
testcase_13 | AC | 61 ms
13,824 KB |
testcase_14 | AC | 24 ms
14,464 KB |
testcase_15 | AC | 214 ms
35,712 KB |
testcase_16 | AC | 140 ms
29,568 KB |
testcase_17 | AC | 137 ms
27,136 KB |
testcase_18 | AC | 32 ms
10,240 KB |
testcase_19 | AC | 74 ms
15,744 KB |
testcase_20 | AC | 89 ms
25,856 KB |
testcase_21 | AC | 151 ms
28,800 KB |
testcase_22 | AC | 130 ms
21,376 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; using ll = long long; using pll = pair<ll, ll>; #define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i) #define rep(i, n) drep(i, 0, n - 1) #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 1; template<typename T> struct edge{ int from, to; T cost; int id; edge(){} edge(int to, T cost=1) : from(-1), to(to), cost(cost){} edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){} }; template<typename T> struct redge{ int from, to; T cap, cost; int rev; redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){} redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){} }; template<typename T> using Edges = vector<edge<T>>; template<typename T> using weighted_graph = vector<Edges<T>>; template<typename T> using tree = vector<Edges<T>>; using unweighted_graph = vector<vector<int>>; template<typename T> using residual_graph = vector<vector<redge<T>>>; vector<long long> dijkstra(weighted_graph<long long> G, int src){ int n = (int)G.size(); vector<long long> dist(n, LINF); dist[src] = 0; priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> PQ; PQ.push({0, src}); while(!PQ.empty()){ int v = PQ.top().second; long long tmp = PQ.top().first; PQ.pop(); if(dist[v] < tmp) continue; for(edge<long long> e : G[v]){ if(dist[v]+e.cost < dist[e.to]){ dist[e.to] = dist[v]+e.cost; PQ.push({dist[e.to], e.to}); } } } return dist; } struct union_find{ vector<int> par; vector<int> siz; union_find(int n) : par(n), siz(n, 1){ for(int i=0; i<n; i++) par[i] = i; } int root(int x){ if (par[x] == x) return x; return par[x] = root(par[x]); } void unite(int x, int y){ int rx = root(x); int ry = root(y); if (rx == ry) return; if (siz[rx] < siz[ry]) swap(rx, ry); siz[rx] += siz[ry]; par[ry] = rx; } bool same(int x, int y){ int rx = root(x); int ry = root(y); return rx == ry; } int size(int x){ return siz[root(x)]; } }; void solve(){ int n, m; cin >> n >> m; int s, t, k; cin >> s >> t >> k; s--; t--; weighted_graph<ll> G(n); union_find uf(n); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; u--; v--; G[u].pb(edge<ll>(v)); G[v].pb(edge<ll>(u)); uf.unite(u, v); } if(!uf.same(s, t)){ if(n>=3){ cout << "Unknown\n"; }else if(n==2){ if(k%2==1){ cout << "Unknown\n"; }else{ cout << "No\n"; } }else if(n==1){ cout << "No\n"; } return; } vector<ll> dist = dijkstra(G, s); if(dist[t]%2 != k%2){ cout << "No\n"; }else{ if(dist[t]<=k){ cout << "Yes\n"; }else{ cout << "Unknown\n"; } } } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int T=1; //cin >> T; while(T--) solve(); }