結果
問題 | No.2705 L to R Graph (Another ver.) |
ユーザー |
![]() |
提出日時 | 2024-03-16 01:33:33 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,149 ms / 3,000 ms |
コード長 | 7,979 bytes |
コンパイル時間 | 5,918 ms |
コンパイル使用メモリ | 325,900 KB |
実行使用メモリ | 196,112 KB |
最終ジャッジ日時 | 2024-09-30 03:40:39 |
合計ジャッジ時間 | 46,939 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 50 |
ソースコード
#include <bits/stdc++.h>using namespace std;#include <atcoder/all>using namespace atcoder;template<typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); }template<typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); }#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)#define rep2(i, m ,n) for (int i = (m); i < (long long)(n); i++)#define REP(i, n) for (long long i = 1; i < (long long)(n); i++)typedef long long ll;#pragma GCC target("avx512f")#pragma GCC optimize("Ofast")#pragma GCC optimize("unroll-loops")#define updiv(N,X) (N + X - 1) / X#define l(n) n.begin(),n.end()#define mat vector<vector<ll>>#define YesNo(Q) Q==1?cout<<"Yes":cout<<"No"#define int long longusing Pt = pair<int, int>;using mint = modint;const int MOD = 998244353LL;const ll INF = 999999999999LL;vector<long long> fact, fact_inv, inv;/* init_nCk :二項係数のための前処理計算量:O(n)*/template <typename T>void input(vector<T> &v){rep(i,v.size()){cin>>v[i];}return;}void init_nCk(int SIZE) {fact.resize(SIZE + 5);fact_inv.resize(SIZE + 5);inv.resize(SIZE + 5);fact[0] = fact[1] = 1;fact_inv[0] = fact_inv[1] = 1;inv[1] = 1;for (int i = 2; i < SIZE + 5; i++) {fact[i] = fact[i - 1] * i % MOD;inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD;}}/* nCk :MODでの二項係数を求める(前処理 int_nCk が必要)計算量:O(1)*/long long nCk(int n, int k) {assert(!(n < k));assert(!(n < 0 || k < 0));return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD;}long long modpow(long long a, long long n, long long mod) {long long res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}ll POW(ll a,ll n){long long res = 1;while (n > 0) {if (n & 1) res = res * a;a = a * a;n >>= 1;}return res;}struct unionfind{vector<int> par,siz;void reset(int n){par.resize(n);siz.resize(n);rep(i,n){par[i]=-1;siz[i]=1;}}int root(int x){if(par[x]==-1){return x;}else{return par[x] = root(par[x]);}}bool issame(int x,int y){return root(x)==root(y);}bool unite(int x,int y){x = root(x);y=root(y);if(x == y){return false;}if(siz[x] < siz[y]){swap(x,y);}par[y] = x;siz[x] += siz[y];return true;}int size(int x){return siz[root(x)];}};struct graph{vector<vector< pair<int,ll> > > val;void print(){rep(i,val.size()){rep(j,val[i].size()){cout << val[i][j].first<<"/" <<val[i][j].second << " ";}cout << endl;}}void resize(int n){val.resize(n);}void add(int n,int k,ll cost){ assert((int)(val.size())>k);val[ n ].push_back( pair(k,cost) ); }void add2(int n,int k,ll cost){ val[ n ].push_back( pair(k,cost) ); val[ k ].push_back( pair(n,cost) );}vector<ll> dfs_basic(int a){vector<ll>seen(val.size(),-1);queue<int> q;q.push(a);seen[a]=0;while(!q.empty()){int wc=q.front();q.pop();rep(i,val[wc].size()){if(-1==seen[val[wc][i].first]){q.push(val[wc][i].first);seen[val[wc][i].first]=seen[wc]+val[wc][i].second;}}}return seen;}};// N の約数をすべて求める関数ll cd(long long N) {// 答えを表す集合long long res=0;// 各整数 i が N の約数かどうかを調べるfor (long long i = 1; i * i <= N; ++i) {// i が N の約数でない場合はスキップif (N % i != 0) continue;// i は約数であるres ++;// N ÷ i も約数である (重複に注意)if (N / i != i){res += 1;}}// 約数を小さい順に並び替えて出力return res;}ll mdt;/// 行列積mat mat_mul(mat &a, mat &b) {mat res(a.size(), vector<ll>(b[0].size()));for (int i = 0; i < (int)(a.size()); i++) {for (int j = 0; j < (int)(b[0].size()); j++) {for (int k = 0; k < (int)(b.size()); k++) {(res[i][j] += a[i][k] * b[k][j]) %= mdt;}}}return res;}/// 行列累乗mat mat_pow(mat a, long long n) {mat res(a.size(), vector<ll>(a.size()));// 単位行列で初期化for (int i = 0; i < (int)(a.size()); i++)res[i][i] = 1;// 繰り返し二乗法while (n > 0) {if (n & 1) res = mat_mul(a, res);a = mat_mul(a, a);n >>= 1;}return res;}int N,P;void cumsum(std::vector<int>& x, int d = 1) {for (int i = d; i < x.size(); i++) {x[i] += x[i - d];x[i] %= P;}}void md( long long& y ){y = (y%P+P)%P;return;}signed main() {std::cin >> N >> P;int ans = 0;std::vector<int> f = {0, 0};int fact = 1;for (int i = 2; i <= N; i++) {f.push_back((modpow(N, N - i, P) * fact) % P);fact *= N - i;fact %= P;}std::vector<int> dist(N, 0);int cumt = 0;int pat = 0;for (int i = N - 2; i > 0; i--) {cumt += f[i + 2];pat += cumt;cumt %= P;pat %= P;dist[i] = pat;}int backet = 100;std::vector<int> pats(N * 2, 0);std::vector<std::vector<int>> det(backet + 1, std::vector<int>(N * 2, 0));for (int i = 1; i <= N; i++) {for (int j = 0; j <= N; j++) {if (i * j >= N) {break;}if (j == 0) {pats[1] += N - i + 1;pats[i * (j + 1)] -= N - i + 1;continue;}if (j > backet) {int cnt = 0;for (int k = i * j + 1; k < i * (j + 1); k += j) {pats[k] += 1;cnt += 1;}pats[i * (j + 1)] -= cnt;} else {det[j][i * j + 1] += 1;int cnt = (i * (j + 1) - 2) / j - i + 1;det[j][std::min(N * 2 - 1, i * j + 1 + cnt * j)] -= 1;pats[i * (j + 1)] -= cnt;}}}for (int i = 1; i <= backet; i++) {cumsum(det[i], i);for (int j = 0; j < N * 2; j++) {pats[j] += det[i][j];pats[j] %= P;}}cumsum(pats);for (int i = 0; i < N - 1; i++) {pats[i] = N * (N + 1) / 2 - pats[i];pats[i] %= P;dist[i] %= P;ans += pats[i] * dist[i];ans %= P;}cumsum(f);std::vector<std::vector<int>> div(N + 1, std::vector<int>());std::vector<std::vector<int>> cum(N + 1, std::vector<int>(1, 0));for (int i = 1; i <= N; i++) {for (int j = i; j <= N; j += i) {div[j].push_back(i);cum[i].push_back(cum[i].back() + f[j]);}}for (int i = 1; i <= N; i++) {std::vector<int> gcd(div[i].size(), 0);for (int j = div[i].size() - 1; j >= 0; j--) {gcd[j] += N / div[i][j];for (int k = j - 1; k >= 0; k--) {if (div[i][j] % div[i][k] == 0) {gcd[k] -= gcd[j];}}int pl = cum[div[i][j]].back() - cum[div[i][j]][i / div[i][j]];md(pl);int plcnt = cum[div[i][j]].size() - 1 - i / div[i][j];md(plcnt);int mi = cum[div[i][j]].back() - cum[div[i][j]][i / div[i][j] - 1] + (f[i - 1] * (i / div[i][j] - 1))%P;md(mi);int micnt = plcnt + 1 + i / div[i][j] - 1;md(micnt);ans += ((pl + f.back() * (micnt - plcnt) - mi)%P) * gcd[j];md(ans);ans %= P;if (j == 0) {ans += (((pl + f.back() * (micnt - plcnt) - mi)%P+P)%P) * ((N * (N - 1) / 2)%P);}md(ans);}}std::cout << (ans * ((N * (N - 1))%P)) % P << std::endl;return 0;}