結果

問題 No.2705 L to R Graph (Another ver.)
ユーザー Magentor
提出日時 2024-03-16 01:33:33
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,149 ms / 3,000 ms
コード長 7,979 bytes
コンパイル時間 5,918 ms
コンパイル使用メモリ 325,900 KB
実行使用メモリ 196,112 KB
最終ジャッジ日時 2024-09-30 03:40:39
合計ジャッジ時間 46,939 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 50
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;
template<typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); }
template<typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); }
#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)
#define rep2(i, m ,n) for (int i = (m); i < (long long)(n); i++)
#define REP(i, n) for (long long i = 1; i < (long long)(n); i++)
typedef long long ll;
#pragma GCC target("avx512f")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define updiv(N,X) (N + X - 1) / X
#define l(n) n.begin(),n.end()
#define mat vector<vector<ll>>
#define YesNo(Q) Q==1?cout<<"Yes":cout<<"No"
#define int long long
using Pt = pair<int, int>;
using mint = modint;
const int MOD = 998244353LL;
const ll INF = 999999999999LL;
vector<long long> fact, fact_inv, inv;
/* init_nCk :
:O(n)
*/
template <typename T>
void input(vector<T> &v){
rep(i,v.size()){cin>>v[i];}
return;
}
void init_nCk(int SIZE) {
fact.resize(SIZE + 5);
fact_inv.resize(SIZE + 5);
inv.resize(SIZE + 5);
fact[0] = fact[1] = 1;
fact_inv[0] = fact_inv[1] = 1;
inv[1] = 1;
for (int i = 2; i < SIZE + 5; i++) {
fact[i] = fact[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD;
}
}
/* nCk :MOD( int_nCk )
:O(1)
*/
long long nCk(int n, int k) {
assert(!(n < k));
assert(!(n < 0 || k < 0));
return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
ll POW(ll a,ll n){
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
struct unionfind{
vector<int> par,siz;
void reset(int n){par.resize(n);siz.resize(n);rep(i,n){par[i]=-1;siz[i]=1;}}
int root(int x){
if(par[x]==-1){return x;}
else{return par[x] = root(par[x]);}
}
bool issame(int x,int y){
return root(x)==root(y);
}
bool unite(int x,int y){
x = root(x);y=root(y);
if(x == y){return false;}
if(siz[x] < siz[y]){swap(x,y);}
par[y] = x;
siz[x] += siz[y];
return true;
}
int size(int x){
return siz[root(x)];
}
};
struct graph{
vector<vector< pair<int,ll> > > val;
void print(){
rep(i,val.size()){
rep(j,val[i].size()){
cout << val[i][j].first<<"/" <<val[i][j].second << " ";
}
cout << endl;
}
}
void resize(int n){
val.resize(n);
}
void add(int n,int k,ll cost){ assert((int)(val.size())>k);val[ n ].push_back( pair(k,cost) ); }
void add2(int n,int k,ll cost){ val[ n ].push_back( pair(k,cost) ); val[ k ].push_back( pair(n,cost) );}
vector<ll> dfs_basic(int a){
vector<ll>seen(val.size(),-1);
queue<int> q;q.push(a);seen[a]=0;
while(!q.empty()){
int wc=q.front();
q.pop();
rep(i,val[wc].size()){
if(-1==seen[val[wc][i].first]){q.push(val[wc][i].first);seen[val[wc][i].first]=seen[wc]+val[wc][i].second;}
}
}
return seen;
}
};
// N
ll cd(long long N) {
//
long long res=0;
// i N 調
for (long long i = 1; i * i <= N; ++i) {
// i N
if (N % i != 0) continue;
// i
res ++;
// N ÷ i ()
if (N / i != i){res += 1;}
}
//
return res;
}
ll mdt;
///
mat mat_mul(mat &a, mat &b) {
mat res(a.size(), vector<ll>(b[0].size()));
for (int i = 0; i < (int)(a.size()); i++) {
for (int j = 0; j < (int)(b[0].size()); j++) {
for (int k = 0; k < (int)(b.size()); k++) {
(res[i][j] += a[i][k] * b[k][j]) %= mdt;
}
}
}
return res;
}
///
mat mat_pow(mat a, long long n) {
mat res(a.size(), vector<ll>(a.size()));
//
for (int i = 0; i < (int)(a.size()); i++)
res[i][i] = 1;
//
while (n > 0) {
if (n & 1) res = mat_mul(a, res);
a = mat_mul(a, a);
n >>= 1;
}
return res;
}
int N,P;
void cumsum(std::vector<int>& x, int d = 1) {
for (int i = d; i < x.size(); i++) {
x[i] += x[i - d];
x[i] %= P;
}
}
void md( long long& y ){
y = (y%P+P)%P;
return;
}
signed main() {
std::cin >> N >> P;
int ans = 0;
std::vector<int> f = {0, 0};
int fact = 1;
for (int i = 2; i <= N; i++) {
f.push_back((modpow(N, N - i, P) * fact) % P);
fact *= N - i;
fact %= P;
}
std::vector<int> dist(N, 0);
int cumt = 0;
int pat = 0;
for (int i = N - 2; i > 0; i--) {
cumt += f[i + 2];
pat += cumt;
cumt %= P;
pat %= P;
dist[i] = pat;
}
int backet = 100;
std::vector<int> pats(N * 2, 0);
std::vector<std::vector<int>> det(backet + 1, std::vector<int>(N * 2, 0));
for (int i = 1; i <= N; i++) {
for (int j = 0; j <= N; j++) {
if (i * j >= N) {
break;
}
if (j == 0) {
pats[1] += N - i + 1;
pats[i * (j + 1)] -= N - i + 1;
continue;
}
if (j > backet) {
int cnt = 0;
for (int k = i * j + 1; k < i * (j + 1); k += j) {
pats[k] += 1;
cnt += 1;
}
pats[i * (j + 1)] -= cnt;
} else {
det[j][i * j + 1] += 1;
int cnt = (i * (j + 1) - 2) / j - i + 1;
det[j][std::min(N * 2 - 1, i * j + 1 + cnt * j)] -= 1;
pats[i * (j + 1)] -= cnt;
}
}
}
for (int i = 1; i <= backet; i++) {
cumsum(det[i], i);
for (int j = 0; j < N * 2; j++) {
pats[j] += det[i][j];
pats[j] %= P;
}
}
cumsum(pats);
for (int i = 0; i < N - 1; i++) {
pats[i] = N * (N + 1) / 2 - pats[i];
pats[i] %= P;dist[i] %= P;
ans += pats[i] * dist[i];
ans %= P;
}
cumsum(f);
std::vector<std::vector<int>> div(N + 1, std::vector<int>());
std::vector<std::vector<int>> cum(N + 1, std::vector<int>(1, 0));
for (int i = 1; i <= N; i++) {
for (int j = i; j <= N; j += i) {
div[j].push_back(i);
cum[i].push_back(cum[i].back() + f[j]);
}
}
for (int i = 1; i <= N; i++) {
std::vector<int> gcd(div[i].size(), 0);
for (int j = div[i].size() - 1; j >= 0; j--) {
gcd[j] += N / div[i][j];
for (int k = j - 1; k >= 0; k--) {
if (div[i][j] % div[i][k] == 0) {
gcd[k] -= gcd[j];
}
}
int pl = cum[div[i][j]].back() - cum[div[i][j]][i / div[i][j]];
md(pl);
int plcnt = cum[div[i][j]].size() - 1 - i / div[i][j];
md(plcnt);
int mi = cum[div[i][j]].back() - cum[div[i][j]][i / div[i][j] - 1] + (f[i - 1] * (i / div[i][j] - 1))%P;
md(mi);
int micnt = plcnt + 1 + i / div[i][j] - 1;
md(micnt);
ans += ((pl + f.back() * (micnt - plcnt) - mi)%P) * gcd[j];
md(ans);
ans %= P;
if (j == 0) {
ans += (((pl + f.back() * (micnt - plcnt) - mi)%P+P)%P) * ((N * (N - 1) / 2)%P);
}
md(ans);
}
}
std::cout << (ans * ((N * (N - 1))%P)) % P << std::endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0