結果
問題 | No.2690 A present from B (Hard) |
ユーザー | 👑 p-adic |
提出日時 | 2024-03-19 13:07:01 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 456 ms / 2,000 ms |
コード長 | 58,174 bytes |
コンパイル時間 | 4,173 ms |
コンパイル使用メモリ | 260,364 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-09-30 05:26:58 |
合計ジャッジ時間 | 9,152 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 455 ms
6,816 KB |
testcase_07 | AC | 456 ms
6,816 KB |
testcase_08 | AC | 455 ms
6,816 KB |
testcase_09 | AC | 17 ms
6,816 KB |
testcase_10 | AC | 18 ms
6,816 KB |
testcase_11 | AC | 14 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 2 ms
6,824 KB |
testcase_14 | AC | 2 ms
6,820 KB |
testcase_15 | AC | 2 ms
6,820 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 244 ms
6,816 KB |
testcase_18 | AC | 176 ms
6,820 KB |
testcase_19 | AC | 96 ms
6,820 KB |
testcase_20 | AC | 281 ms
6,816 KB |
testcase_21 | AC | 67 ms
6,820 KB |
testcase_22 | AC | 47 ms
6,816 KB |
testcase_23 | AC | 158 ms
6,820 KB |
testcase_24 | AC | 152 ms
6,816 KB |
testcase_25 | AC | 41 ms
6,816 KB |
testcase_26 | AC | 265 ms
6,820 KB |
testcase_27 | AC | 299 ms
6,816 KB |
testcase_28 | AC | 299 ms
6,820 KB |
testcase_29 | AC | 289 ms
6,816 KB |
ソースコード
#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( int , N , M ); CIN_A( int , A , M ); CEXPR( int , infty , 2e5 ); GeometricProgressionMinDualSqrtDecomposition dp{ Module<int,int>() , infty , { -1 , 1 } , id<int>( N ) }; FOREQINV( j , M - 1 , 0 ){ int dpp_minus_2 = A[j]-2 >= 0 ? dp[A[j]-2] : -1; int dpp_minus_1 = dp[A[j]-1]; int dpp_0 = dp[A[j]]; int dpp_1 = A[j]+1 < N ? dp[A[j]+1] : -1; dp.Set( A[j]-1 , dpp_0 ); dp.Set( A[j] , dpp_minus_1 ); if( A[j]-2 >= 0 && dpp_0 > dpp_minus_2 + 1 ){ dp.Set( A[j]-1 , dpp_minus_2 + 1 ); } if( A[j]+1 < N && dpp_minus_1 > dpp_1 + 1 ){ dp.Set( A[j] , dpp_1 + 1 ); } int dp_minus_1 = dp[A[j]-1]; int dp_0 = dp[A[j]]; if( dpp_minus_1 > dp_minus_1 ){ dp.IntervalSetMin( 0 , A[j] - 2 , 0 , dp_minus_1 + ( A[j]-1 ) ); dp.IntervalSetMin( A[j] , N - 1 , 1 , dp_minus_1 - ( A[j]-1 ) ); } if( dpp_0 > dp_0 ){ dp.IntervalSetMin( 0 , A[j] - 1 , 0 , dp_0 + A[j] ); dp.IntervalSetMin( A[j] + 1 , N - 1 , 1 , dp_0 - A[j] ); } } FOR( i , 1 , N ){ cout << dp[i] << " \n"[i==N-1]; } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( ll N , ll M , ll K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // } } // 圧縮時は中身だけ削除する。 IN VO RandomTest() { // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N ); // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M ); // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K ); // COMPARE( N , M , N ); } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS (5KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 template <typename R , typename U> class VirtualRSet : virtual public UnderlyingSet<U> { public: virtual U Action( const R& r , U u ) = 0; inline U Power( U u , const R& r ); inline U ScalarProduct( const R& r , U u ); }; template <typename U , typename MAGMA> class RegularRSet : virtual public VirtualRSet<U,U> , public MAGMA { public: inline RegularRSet( MAGMA magma ); inline U Action( const U& r , U u ); }; template <typename MAGMA> RegularRSet( MAGMA magma ) -> RegularRSet<inner_t<MAGMA>,MAGMA>; template <typename R , typename U , typename O_U> class AbstractRSet : virtual public VirtualRSet<R,U> { private: O_U m_o_U; public: // 型推論のために余計な引数dummy0,dummy1が必要 inline AbstractRSet( const R& dummy0 , const U& dummy1 , O_U o_U ); inline U Action( const R& r , U u ); }; template <typename R , typename U , typename O_U , typename GROUP> class AbstractModule : public AbstractRSet<R,U,O_U> , public GROUP { public: // 型推論のために余計な引数dummyが必要 inline AbstractModule( const R& dummy , O_U o_U , GROUP M ); }; template <typename R , typename O_U , typename GROUP> AbstractModule( const R& dummy , O_U o_U , GROUP M ) -> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>; template <typename R , typename U> class Module : virtual public VirtualRSet<R,U> , public AdditiveGroup<U> { private: inline U Action( const R& r , U u ); }; template <typename R , typename MAGMA> inline RegularRSet<R,MAGMA>::RegularRSet( MAGMA magma ) : MAGMA( move( magma ) ) {} template <typename R , typename U , typename O_U> inline AbstractRSet<R,U,O_U>::AbstractRSet( const R& dummy0 , const U& dummy1 , O_U o_U ) : m_o_U( move( o_U ) ) { static_assert( is_invocable_r_v<U,O_U,R,U> ); } template <typename R , typename U , typename O_U , typename GROUP> inline AbstractModule<R,U,O_U,GROUP>::AbstractModule( const R& dummy , O_U o_U , GROUP M ) : AbstractRSet<R,U,O_U>( dummy , M.One() , move( o_U ) ) , GROUP( move( M ) ) { static_assert( is_same_v<U,inner_t<GROUP>> ); } template <typename U , typename MAGMA> inline U RegularRSet<U,MAGMA>::Action( const U& r , U u ) { return this->Product( r , move( u ) ); } template <typename R , typename U , typename O_U> inline U AbstractRSet<R,U,O_U>::Action( const R& r , U u ) { return m_o_U( r , move( u ) ); } template <typename R , typename U> inline U Module<R,U>::Action( const R& r , U u ) { return move( u *= r ); } template <typename R , typename U> inline U VirtualRSet<R,U>::Power( U u , const R& r ) { return Action( r , move( u ) ); } template <typename R , typename U> inline U VirtualRSet<R,U>::ScalarProduct( const R& r , U u ) { return Action( r , move( u ) ); } IN CE int Sqrt(CRI N)NE{if(N <= 1){RE 1;}int left = 0;int right = N;WH(left + 1 < right){int m =(left + right)/ 2;(m <=(N - 1)/ m?left:right)= m;}RE right;} // 入力の範囲内で要件 // (1) LがRの基点付き左作用構造(例えば基点付きマグマの正則左加群構造)である。 // (2) XがUの「Lの基点がUの恒等変換に対応する左L作用構造」である。 // を満たす場合にのみサポート。 // Mに可換性を課す場合は一点作用がO(1)のCommutativeDualSqrtDecompositionが使用可。 // 配列による初期化O(N) // 一点取得O(1) // 一点代入O(N^{1/2})(ただし状況次第でO(1)) // X.Action()による一点作用はなし(一点代入か区間作用を使う) // X.Action()による区間作用O(N^{1/2}) template <typename R , typename PT_MAGMA , typename U , typename R_SET> class DualSqrtDecomposition { protected: PT_MAGMA m_L; R_SET m_X; int m_N; int m_N_sqrt; int m_N_d; int m_N_m; vector<U> m_a; vector<R> m_b; public: inline DualSqrtDecomposition( PT_MAGMA L , R_SET X , vector<U> a = {} ); inline DualSqrtDecomposition( PT_MAGMA L , R_SET X , vector<U> a , const int& N_sqrt ); template <typename...Args> inline void Initialise( Args&&... args ); inline void Set( const int& i , const U& u ); // ArgはL.Actionの第1引数として有効な型。 template <typename Arg> inline void IntervalAct( const int& i_start , const int& i_final , const Arg& r ); // 参照返しでないことに注意。 inline U operator[]( const int& i ); inline U Get( const int& i ); protected: // 作用の遅延評価を解消する。 inline void Update( const int& d ); }; template <typename PT_MAGMA , typename R_SET , typename...Args> DualSqrtDecomposition( PT_MAGMA M , R_SET X , Args&&... args ) -> DualSqrtDecomposition<inner_t<PT_MAGMA>,PT_MAGMA,inner_t<R_SET>,R_SET>; template <typename R , typename PT_MAGMA , typename U , typename R_SET> inline DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::DualSqrtDecomposition( PT_MAGMA L , R_SET X , vector<U> a ) : m_L( move( L ) ) , m_X( move( X ) ) , m_N( a.size() ) , m_N_sqrt( Sqrt( m_N ) ) , m_N_d( ( m_N + m_N_sqrt - 1 ) / m_N_sqrt ) , m_N_m( m_N_d * m_N_sqrt ) , m_a( move( a ) ) , m_b( m_N_d , m_L.Point() ) { static_assert( is_same_v<R,inner_t<PT_MAGMA>> && is_same_v<U,inner_t<R_SET>> ); } template <typename R , typename PT_MAGMA , typename U , typename R_SET> inline DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::DualSqrtDecomposition( PT_MAGMA L , R_SET X , vector<U> a , const int& N_sqrt ) : m_L( move( L ) ) , m_X( move( X ) ) , m_N( a.size() ) , m_N_sqrt( N_sqrt ) , m_N_d( ( m_N + m_N_sqrt - 1 ) / m_N_sqrt ) , m_N_m( m_N_d * m_N_sqrt ) , m_a( move( a ) ) , m_b( m_N_d , m_L.Point() ) { static_assert( is_same_v<R,inner_t<PT_MAGMA>> && is_same_v<U,inner_t<R_SET>> ); } template <typename R , typename PT_MAGMA , typename U , typename R_SET> template <typename...Args> inline void DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::Initialise( Args&&... args ) { *this = DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>( move( m_L ) , move( m_X ) , forward<decay_t<Args>>( args )... ); } template <typename R , typename PT_MAGMA , typename U , typename R_SET> inline void DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::Set( const int& i , const U& u ) { U& m_ai = m_a[i]; if( m_ai != u ){ Update( i / m_N_sqrt ); m_ai = u; } } template <typename R , typename PT_MAGMA , typename U , typename R_SET> template <typename Arg> inline void DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::IntervalAct( const int& i_start , const int& i_final , const Arg& r ) { const int i_min = max( i_start , 0 ); const int i_ulim = min( i_final + 1 , m_N ); const int d_0 = ( i_min + m_N_sqrt - 1 ) / m_N_sqrt; const int d_1 = max( d_0 , i_ulim / m_N_sqrt ); const int i_0 = min( d_0 * m_N_sqrt , i_ulim ); const int i_1 = max( i_0 , d_1 * m_N_sqrt ); const R r_copy = m_L.Action( r , m_L.Point() ); if( d_0 > 0 ){ Update( d_0 - 1 ); } for( int i = i_min ; i < i_0 ; i++ ){ U& m_ai = m_a[i]; m_ai = m_X.Action( r_copy , move( m_ai ) ); } for( int d = d_0 ; d < d_1 ; d++ ){ R& m_bd = m_b[d]; m_bd = m_L.Action( r , move( m_bd ) ); } if( d_1 < m_N_d ){ Update( d_1 ); } for( int i = i_1 ; i < i_ulim ; i++ ){ U& m_ai = m_a[i]; m_ai = m_X.Action( r_copy , move( m_ai ) ); } return; } template <typename R , typename PT_MAGMA , typename U , typename R_SET> inline U DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::operator[]( const int& i ) { assert( 0 <= i && i < m_N ); return m_X.Action( m_b[i / m_N_sqrt] , m_a[i] ); } template <typename R , typename PT_MAGMA , typename U , typename R_SET> inline U DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::Get( const int& i ) { return operator[]( i ); } template <typename R , typename PT_MAGMA , typename U , typename R_SET> inline void DualSqrtDecomposition<R,PT_MAGMA,U,R_SET>::Update( const int& d ) { R& m_bd = m_b[d]; const R& point = m_L.Point(); if( m_bd != point ){ const int j_min = d * m_N_sqrt; const int j_ulim = min( j_min + m_N_sqrt , m_N ); for( int j = j_min ; j < j_ulim ; j++ ){ U& m_aj = m_a[j]; m_aj = m_X.Action( m_bd , move( m_aj ) ); } m_bd = point; } return; } // 自由U加群の構造射と演算の合成 template <typename U> class GeometricProgressionMinComposition : virtual public PointedSet<vector<U>> , virtual public VirtualRSet<pair<int,U>,vector<U>> { public: inline GeometricProgressionMinComposition( const int& size , const U& infty ); vector<U> Action( const pair<int,U>& y0 , vector<U> y1 ); }; // 自由U加群の左作用構造 template <typename U , typename N_MODULE> class GeometricProgressionMinAction : virtual public VirtualRSet<vector<U>,pair<U,int>> { private: N_MODULE m_M; const vector<U>* m_p_memory; public: inline GeometricProgressionMinAction( N_MODULE M , const vector<U>& memory ); pair<U,int> Action( const vector<U>& y , pair<U,int> u ); }; template <typename U , typename N_MODULE> using BaseOfGeometricProgressionMinDualSqrtDecomposition = DualSqrtDecomposition<vector<U>,GeometricProgressionMinComposition<U>,pair<U,int>,GeometricProgressionMinAction<U,N_MODULE>>; // 入力の範囲内で要件 // (1) Mがbool operator<(const U&,const U&)に関してUの全順序N加群構造である。 // を満たす場合にのみサポート。 // クエリ中の等比数列(r^i y)_iの公比rの種類数をCとおく。 // 零初期化O(N) // 配列による初期化O(N) // 一点取得O(C) // 一点代入O(N^{1/2}C)(ただし状況次第でO(1)) // 等比数列(r^i y)_iによる区間min作用O(N^{1/2} log_2 C) template <typename U , typename N_MODULE> class GeometricProgressionMinDualSqrtDecomposition : public BaseOfGeometricProgressionMinDualSqrtDecomposition<U,N_MODULE> { private: vector<U> m_memory; public: template <typename...Args> inline GeometricProgressionMinDualSqrtDecomposition( N_MODULE M , const U& infty , vector<U> memory_r , vector<U> a = {} , Args&&... args ); template <typename...Args> inline void Initialise( Args&&... args ); inline void Set( const int& i , U u ); inline void IntervalAct( const int& i_start , const int& i_final , const vector<U>& f ) = delete; inline void IntervalSetMin( const int& i_start , const int& i_final , const int& r_num , const U& y ); inline U operator[]( const int& i ); inline U Get( const int& i ); private: static vector<pair<U,int>> GetGraph( vector<U> a ); }; template <typename N_MODULE , typename...Args> GeometricProgressionMinDualSqrtDecomposition( N_MODULE M , Args&&... args ) -> GeometricProgressionMinDualSqrtDecomposition<inner_t<N_MODULE>,N_MODULE>; template <typename U> inline GeometricProgressionMinComposition<U>::GeometricProgressionMinComposition( const int& size , const U& infty ) : PointedSet<vector<U>>( vector( size , infty ) ) {} template <typename U , typename N_MODULE> inline GeometricProgressionMinAction<U,N_MODULE>::GeometricProgressionMinAction( N_MODULE M , const vector<U>& memory ) : m_M( move( M ) ) , m_p_memory( &memory ) { static_assert( is_same_v<U,inner_t<N_MODULE>> ); } template <typename U> vector<U> GeometricProgressionMinComposition<U>::Action( const pair<int,U>& y0 , vector<U> y1 ) { U& y1_r = y1[y0.first]; y1_r = min( y1_r , y0.second ); return move( y1 ); } template <typename U , typename N_MODULE> pair<U,int> GeometricProgressionMinAction<U,N_MODULE>::Action( const vector<U>& y , pair<U,int> u ) { const int size = y.size(); for( int i = 0 ; i < size ; i++ ){ u.first = min( u.first , m_M.Product( m_M.Power( ( *m_p_memory )[i] , u.second ) , y[i] ) ); } return move( u ); } template <typename U , typename N_MODULE> template <typename...Args> inline GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::GeometricProgressionMinDualSqrtDecomposition( N_MODULE M , const U& infty , vector<U> memory_r , vector<U> a , Args&&... args ) : BaseOfGeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>( GeometricProgressionMinComposition<U>( memory_r.size() , infty ) , GeometricProgressionMinAction<U,N_MODULE>( move( M ) , m_memory ) , GetGraph( move( a ) ) , forward<decay_t<Args>>( args )... ) , m_memory( move( memory_r ) ) {} template <typename U , typename N_MODULE> template <typename...Args> inline void GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::Initialise( Args&&... args ) { *this = GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>( move( this->m_M , forward<decay_t<Args>>( args )... ) ); } template <typename U , typename N_MODULE> inline void GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::Set( const int& i , U u ) { BaseOfGeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::Set( i , { move( u ) , i } ); } template <typename U , typename N_MODULE> inline void GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::IntervalSetMin( const int& i_start , const int& i_final , const int& r_num , const U& y ) { assert( 0 <= r_num && r_num < int( m_memory.size() ) ); BaseOfGeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::IntervalAct( i_start , i_final , pair<int,U>{ r_num , y } ); } template <typename U , typename N_MODULE> inline U GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::operator[]( const int& i ) { return BaseOfGeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::operator[]( i ).first; } template <typename U , typename N_MODULE> inline U GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::Get( const int& i ) { return operator[]( i ); } template <typename U , typename N_MODULE> inline vector<pair<U,int>> GeometricProgressionMinDualSqrtDecomposition<U,N_MODULE>::GetGraph( vector<U> a ) { const int size = a.size(); vector<pair<U,int>> answer( size ); for( int i = 0 ; i < size ; i++ ){ answer[i] = { move( a[i] ) , i }; } return answer; } // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else { if( exec_mode == experiment_mode ){ Experiment(); } else if( exec_mode == small_test_mode ){ SmallTest(); } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); REPEAT( test_case_num ){ RandomTest(); } } RE 0; } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); } #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; } #define CIN_A( LL , A , N ) VE<LL> A( N ); SET_A( A , N ); #endif #include <bits/stdc++.h> using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( A , N , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( A , N , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t(VAR)decay_t<decltype(VAR)> TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...)); TE <TY T> US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE <TY INT> US T2 = pair<INT,INT>; TE <TY INT> US T3 = tuple<INT,INT,INT>; TE <TY INT> US T4 = tuple<INT,INT,INT,INT>; US path = pair<int,ll>; // 入出力用 #define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} TE <CL Traits> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is){RE is;} TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);} TE <CL Traits> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator){RE is;} TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);} DF_OF_COUT_FOR_VE(VE); DF_OF_COUT_FOR_VE(LI); DF_OF_COUT_FOR_VE(set); DF_OF_COUT_FOR_VE(unordered_set); TE <CL Traits,TY Arg1,TY Arg2> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO pair<Arg1,Arg2>& arg){RE os << arg.first << " " << arg.second;} TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg& arg){RE os << arg;} TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);} // 算術用 TE <TY T> CE T PositiveBaseRS(CO T& a,CO T& p){RE a >= 0?a % p:p - 1 -((-(a + 1))% p);} TE <TY T> CE T RS(CO T& a,CO T& p){RE PositiveBaseRS(a,p < 0?-p:p);} TE <TY T> CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseRS(a,p))/ p;} TE <TY T> CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);} #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ ST_AS( ! is_same<decldecay_t( ARGUMENT ),int>::value && ! is_same<decldecay_t( ARGUMENT ),uint>::value ); \ decldecay_t( ARGUMENT ) ANSWER{ 1 }; \ { \ decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ ll ANSWER[CE_LENGTH]; \ ll ANSWER_INV[CE_LENGTH]; \ ll INVERSE[CE_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE <TY T> IN TY set<T>::iterator MaximumLeq(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.upper_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;} // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE <TY T> IN TY set<T>::iterator MaximumLt(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.lower_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;} // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 TE <TY T> IN TY set<T>::iterator MinimumGeq(set<T>& S,CO T& t){RE S.lower_bound(t);} // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 TE <TY T> IN TY set<T>::iterator MinimumGt(set<T>& S,CO T& t){RE S.upper_bound(t);} // 尺取り法用 // VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して // trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。 #define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \ { \ auto VAR_TPA = INIT; \ auto VAR_TPA ## _L = VAR_TPA; \ auto VAR_TPA ## _R = VAR_TPA; \ bool on_TPA = false; \ int state_TPA = 3; \ WH( CONTINUE_CONDITION ){ \ bool on_TPA_next = ON_CONDITION; \ state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \ CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ? "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \ if( state_TPA == 0 ){ \ OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else if( state_TPA == 1 ){ \ OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } else if( state_TPA == 2 ){ \ ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else { \ ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } \ on_TPA = on_TPA_next; \ } \ CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \ FINISH; \ } \ // データ構造用 TE <TY T,TE <TY...> TY V> IN auto OP+(CO V<T>& a0,CO V<T>& a1)-> decldecay_t((declval<V<T>>().push_back(declval<T>()),a0)){if(a0.empty()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V<T> AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0 + *IT1);}RE AN;} TE <TY T,TY U> IN pair<T,U> OP+(CO pair<T,U>& t0,CO pair<T,U>& t1){RE{t0.first + t1.first,t0.second + t1.second};} TE <TY T,TY U,TY V> IN tuple<T,U,V> OP+(CO tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1)};} TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP+(CO tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};} TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;} TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;} TE <TY T> IN T Id(CO T& v){RE v;} TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;} // グラフ用 TE <TY T,TE <TY...> TY V> IN auto Get(CO V<T>& a){RE[&](CRI i = 0){RE a[i];};} TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;} // グリッド問題用 int H,W,H_minus,W_minus,HW; VE<string> wall_str;VE<VE<bool> > non_wall; char walkable = '.',unwalkable = '#'; IN T2<int> EnumHW(CRI v){RE{v / W,v % W};} IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;} CO string direction[4]={"U","R","D","L"}; IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);} IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;} IN VE<int> EdgeOnGrid(CRI v){VE<int>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back(EnumHW_inv({i+1,j}));}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back(EnumHW_inv({i,j+1}));}RE AN;} IN VE<path> WeightedEdgeOnGrid(CRI v){VE<path>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back({EnumHW_inv({i+1,j}),1});}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}),1});}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back({EnumHW_inv({i,j+1}),1});}RE AN;} IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);} IN VO SetWallOnGrid(CRI i,VE<VE<bool>>& b){if(b.empty()){b.reSZ(H,VE<bool>(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable?false:(AS(S_i[j]==unwalkable),true);}} // デバッグ用 #ifdef DEBUG IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } VO AutoCheck( int& exec_mode , CO bool& use_getline ); IN VO Solve(); IN VO Experiment(); IN VO SmallTest(); IN VO RandomTest(); ll GetRand( CRL Rand_min , CRL Rand_max ); IN VO BreakPoint( CRI LINE ) {} int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // VVV 常設ライブラリは以下に挿入する。 // Map (1KB) // c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;}; TE <TY T , TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>; // Algebra (4KB) // c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt #define DECLARATION_OF_CPOINT( POINT ) inline const U& POINT() const noexcept #define DECLARATION_OF_POINT( POINT ) inline U& POINT() noexcept #define DEFINITION_OF_CPOINT( POINT ) template <typename U> inline const U& VirtualPointedSet<U>::POINT() const noexcept { return Point(); } #define DEFINITION_OF_POINT( POINT ) template <typename U> inline U& VirtualPointedSet<U>::POINT() noexcept { return Point(); } // - インタフェースをなるべく抽象型で与えて仮想継承する。 // - 具体的構造が2種類以上あるものはもちろん抽象型を仮想継承する。 // - VirtualPointedSetのように具体的構造が1種類しかないものも仮想継承のコンストラクタ呼び出しを // 省略するためになるべく抽象型を用意する。 // - AbstractDijkstraのように全ての具体的構造が1つの具体的構造の派生である場合は // インタフェースを必要としない。 // - コンストラクタはなるべく省略できるようにするが、ポインタはメンバ変数にしない。 // - VirtualGraphのように具体的構造が2種類以上あるもので全てに共通の定義本体を持つ関数(Edge)が // 必要な場合は実装が膨れ上がらないように抽象型に関数の定義をし、そのため抽象型にメンバ変数が // 必要になる場合はコンストラクタを非自明なものにする // - 代わりにポインタを抽象型のメンバとして // 派生クラスのコンストラクタの定義内でアドレスを渡すようにすると、ムーブなどで意図せず // ポインタの指すアドレスが意図通りでなくなることに注意する。 // - データ構造に渡すことを想定する。 // - データ構造の配列や初期化をムーブセマンティクスで処理できるようにするために // 代数構造もムーブコンストラクタがdeleteされないようにする。 // - そのために演算に対応する関数オブジェクトは参照ではなく実体としてメンバに持つ。 template <typename U> class UnderlyingSet { public: using type = U; }; template <typename U> class VirtualPointedSet : virtual public UnderlyingSet<U> { public: virtual const U& Point() const noexcept = 0; virtual U& Point() noexcept = 0; DECLARATION_OF_CPOINT( Unit ); DECLARATION_OF_CPOINT( Zero ); DECLARATION_OF_CPOINT( One ); DECLARATION_OF_CPOINT( Infty ); DECLARATION_OF_POINT( init ); DECLARATION_OF_POINT( root ); }; template <typename U> class PointedSet : virtual public VirtualPointedSet<U> { private: U m_b_U; public: inline PointedSet( U b_u = U() ); inline const U& Point() const noexcept; inline U& Point() noexcept; }; template <typename U> class VirtualNSet : virtual public UnderlyingSet<U> { public: virtual U Transfer( const U& u ) = 0; inline U Inverse( const U& u ); }; template <typename U , typename F_U> class AbstractNSet : virtual public VirtualNSet<U> { private: F_U m_f_U; public: inline AbstractNSet( F_U f_U ); inline U Transfer( const U& u ); }; template <typename U> class VirtualMagma : virtual public UnderlyingSet<U> { public: virtual U Product( U u0 , const U& u1 ) = 0; inline U Sum( U u0 , const U& u1 ); }; template <typename U = ll> class AdditiveMagma : virtual public VirtualMagma<U> { public: inline U Product( U u0 , const U& u1 ); }; template <typename U = ll> class MultiplicativeMagma : virtual public VirtualMagma<U> { public: inline U Product( U u0 , const U& u1 ); }; template <typename U , typename M_U> class AbstractMagma : virtual public VirtualMagma<U> { private: M_U m_m_U; public: inline AbstractMagma( M_U m_U ); inline U Product( U u0 , const U& u1 ); }; template <typename U> inline PointedSet<U>::PointedSet( U b_U ) : m_b_U( move( b_U ) ) {} template <typename U> inline const U& PointedSet<U>::Point() const noexcept { return m_b_U; } template <typename U> inline U& PointedSet<U>::Point() noexcept { return m_b_U; } DEFINITION_OF_CPOINT( Unit ); DEFINITION_OF_CPOINT( Zero ); DEFINITION_OF_CPOINT( One ); DEFINITION_OF_CPOINT( Infty ); DEFINITION_OF_POINT( init ); DEFINITION_OF_POINT( root ); template <typename U , typename F_U> inline AbstractNSet<U,F_U>::AbstractNSet( F_U f_U ) : m_f_U( move( f_U ) ) { static_assert( is_invocable_r_v<U,F_U,U> ); } template <typename U , typename F_U> inline U AbstractNSet<U,F_U>::Transfer( const U& u ) { return m_f_U( u ); } template <typename U> inline U VirtualNSet<U>::Inverse( const U& u ) { return Transfer( u ); } template <typename U , typename M_U> inline AbstractMagma<U,M_U>::AbstractMagma( M_U m_U ) : m_m_U( move( m_U ) ) { static_assert( is_invocable_r_v<U,M_U,U,U> ); } template <typename U> inline U AdditiveMagma<U>::Product( U u0 , const U& u1 ) { return move( u0 += u1 ); } template <typename U> inline U MultiplicativeMagma<U>::Product( U u0 , const U& u1 ) { return move( u0 *= u1 ); } template <typename U , typename M_U> inline U AbstractMagma<U,M_U>::Product( U u0 , const U& u1 ) { return m_m_U( move( u0 ) , u1 ); } template <typename U> inline U VirtualMagma<U>::Sum( U u0 , const U& u1 ) { return Product( move( u0 ) , u1 ); } template <typename U> class VirtualMonoid : virtual public VirtualMagma<U> , virtual public VirtualPointedSet<U> {}; template <typename U = ll> class AdditiveMonoid : virtual public VirtualMonoid<U> , public AdditiveMagma<U> , public PointedSet<U> {}; template <typename U = ll> class MultiplicativeMonoid : virtual public VirtualMonoid<U> , public MultiplicativeMagma<U> , public PointedSet<U> { public: inline MultiplicativeMonoid( U e_U ); }; template <typename U , typename M_U> class AbstractMonoid : virtual public VirtualMonoid<U> , public AbstractMagma<U,M_U> , public PointedSet<U> { public: inline AbstractMonoid( M_U m_U , U e_U ); }; template <typename U> inline MultiplicativeMonoid<U>::MultiplicativeMonoid( U e_U ) : PointedSet<U>( move( e_U ) ) {} template <typename U , typename M_U> inline AbstractMonoid<U,M_U>::AbstractMonoid( M_U m_U , U e_U ) : AbstractMagma<U,M_U>( move( m_U ) ) , PointedSet<U>( move( e_U ) ) {} template <typename U> class VirtualGroup : virtual public VirtualMonoid<U> , virtual public VirtualPointedSet<U> , virtual public VirtualNSet<U> {}; template <typename U = ll> class AdditiveGroup : virtual public VirtualGroup<U> , public AdditiveMonoid<U> { public: inline U Transfer( const U& u ); }; template <typename U , typename M_U , typename I_U> class AbstractGroup : virtual public VirtualGroup<U> , public AbstractMonoid<U,M_U> , public AbstractNSet<U,I_U> { public: inline AbstractGroup( M_U m_U , U e_U , I_U i_U ); }; template <typename U , typename M_U , typename I_U> inline AbstractGroup<U,M_U,I_U>::AbstractGroup( M_U m_U , U e_U , I_U i_U ) : AbstractMonoid<U,M_U>( move( m_U ) , move( e_U ) ) , AbstractNSet<U,I_U>( move( i_U ) ) {} template <typename U> inline U AdditiveGroup<U>::Transfer( const U& u ) { return -u; } // Graph (5KB) // c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E>;TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>; TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1> && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E> && is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));} // ConstexprModulo (7KB) // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt #define RP Represent #define DeRP Derepresent CEXPR(uint,P,998244353); TE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M> OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);} TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CO uint& RP()CO NE;ST CE Mod<M> DeRP(CO uint& n)NE;ST IN CO Mod<M>& Inverse(CO uint& n);ST IN CO Mod<M>& Factorial(CO uint& n);ST IN CO Mod<M>& FactorialInverse(CO uint& n);ST IN Mod<M> Combination(CO uint& n,CO uint& i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;ST CE uint& Normalise(uint& n)NE;}; US MP = Mod<P>; TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = #ifdef DEBUG 1e3; #else 1e6; #endif ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;}; TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{RE Ref(m_n = MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = RS<M>(ull(m_n)* n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CO uint& n){AS(n < COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CO uint& n){AS(n < COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CO uint& n){ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CO uint& n,CO uint& i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CO uint& Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(CO uint& n)NE{Mod<M> n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_CE(Mod<M> n)NE{RE MO(n.NonNegativePW(M - 2));}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN