結果
問題 | No.778 クリスマスツリー |
ユーザー |
|
提出日時 | 2024-03-19 23:05:19 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 310 ms / 2,000 ms |
コード長 | 21,215 bytes |
コンパイル時間 | 21,604 ms |
コンパイル使用メモリ | 383,220 KB |
最終ジャッジ日時 | 2025-02-20 07:53:29 |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 12 |
ソースコード
#pragma region Macros#pragma GCC optimize("O3,unroll-loops")#pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2")#include <bits/extc++.h>// #include <atcoder/all>// using namespace atcoder;using namespace std;using namespace __gnu_pbds;// #include <boost/multiprecision/cpp_dec_float.hpp>// #include <boost/multiprecision/cpp_int.hpp>// namespace mp = boost::multiprecision;// using Bint = mp::cpp_int;// using Bdouble = mp::number<mp::cpp_dec_float<256>>;#define pb emplace_back#define int ll#define endl '\n'#define sqrt __builtin_sqrt#define cbrt __builtin_cbrt#define hypot __builtin_hypotusing ll = long long;using ld = long double;const ld PI = acosl(-1);const int INF = 1 << 30;const ll INFL = 1LL << 61;const int MOD = 998244353;// const int MOD = 1000000007;const ld EPS = 1e-10;const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; }const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1};struct Edge {int from, to;ll cost;Edge(int to, ll cost) : to(to), cost(cost) {}Edge(int from, int to, ll cost) : from(from), to(to), cost(cost) {}};chrono::system_clock::time_point start, now;__attribute__((constructor))void constructor() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(10);start = chrono::system_clock::now();}__int128_t POW(__int128_t x, int n) {__int128_t ret = 1;assert(n >= 0);if (x == 1 or n == 0) ret = 1;else if (x == -1 && n % 2 == 0) ret = 1;else if (x == -1) ret = -1;else if (n % 2 == 0) {assert(x < INFL);ret = POW(x * x, n / 2);} else {assert(x < INFL);ret = x * POW(x, n - 1);}return ret;}int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすqassert(y != 0);if (x >= 0 && y > 0) return x / y;if (x >= 0 && y < 0) return x / y - (x % y < 0);if (x < 0 && y < 0) return x / y + (x % y < 0);return x / y - (x % y < 0); // (x < 0 && y > 0)}// int perl(ld x, ld y) { // perld(4.5, 2.1) = 2 // TODO// if (-EPS < x && x < 0 or 0 < x && x < EPS) x = 0;// if (-EPS < y && y < 0 or 0 < x && x < EPS) y = 0;// assert(!equals(y, 0));// if (x >= 0 && y > 0) return floor(x / y)+EPS;// if (x >= 0 && y < 0) return floor(x / y) - (x - floor(x/y)*y < -EPS);// if (x < 0 && y < 0) return floor(x / y) + (x - floor(x/y)*y < -EPS);// return floor(x / y) - (x - floor(x/y)*y < -EPS); // (x < 0 && y > 0)// }int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすrassert(y != 0);if (x >= 0) return x % y;__int128_t ret = x % y; // (x < 0)ret += (__int128_t)abs(y) * INFL;ret %= abs(y);return ret;}// ld modl(ld x, ld y) { // TODO// assert(!equals(y, 0));// if (x >= -EPS) return (x - floor(x/y)*y);// ld ret = x - floor(x/y)*y; // (x < 0)// ret += abs(y) * INFL; // TODO : オーバーフローする?// ret = x - floor(x/abs(y))*abs(y);// return ret;// }// int floor(int x, int y) { // TODO// assert(y != 0);// if (b < 0) a = -a, b = -b;// return a >= 0 ? a / b : (a + 1) / b - 1;// }// int ceil(int x, int y) { // TODO// assert(y != 0);// if (b < 0) a = -a, b = -b;// return a > 0 ? (a - 1) / b + 1 : a / b;// }// int floorl(ld x, ld y) { return 0; } // TODO// int ceill(ld x, ld y) { return 0; } // TODO// int gauss(int x, int y) {// assert(y != 0);// return x / y;// } // 整数部分(未verify)// int gauss(ld x, ld y) { return 0; } // TODOpair<int, int> max(const pair<int, int> &a, const pair<int, int> &b) {if (a.first > b.first or a.first == b.first && a.second > b.second) {return a;}return b;}pair<int, int> min(const pair<int, int> &a, const pair<int, int> &b) {if (a.first < b.first or a.first == b.first && a.second < b.second) {return a;}return b;}template <class T> bool chmax(T &a, const T& b) {if (a < b) { a = b; return true; }return false;}template <class T> bool chmin(T &a, const T& b) {if (a > b) { a = b; return true; }return false;}template <class T> T mid(T a, T b, T c) {return a + b + c - max({a, b, c}) - min({a, b, c});}template <class T> void sort(T &a, T &b, T &c, bool rev = false) {if (rev == false) {if (a > b) swap(a, b);if (a > c) swap(a, c);if (b > c) swap(b, c);} else {if (c > b) swap(c, b);if (c > a) swap(c, a);if (b > a) swap(b, a);}}template <class T> void sort(T &a, T &b, T &c, T &d, bool rev = false) {if (rev == false) {if (a > b) swap(a, b); if (a > c) swap(a, c); if (a > d) swap(a, d);if (b > c) swap(b, c); if (b > d) swap(b, d);if (c > d) swap(c, d);} else {if (d > c) swap(d, c); if (d > b) swap(d, b); if (d > a) swap(d, a);if (c > b) swap(c, b); if (c > a) swap(c, a);if (b > a) swap(b, a);}}int countl_zero(int x) { return __builtin_clzll(x); }int countl_one(int x) {int ret = 0; while (x % 2) { x /= 2; ret++; }return ret;}int countr_zero(int x) { return __builtin_ctzll(x); }int countr_one(int x) {int ret = 0, k = 63 - __builtin_clzll(x);while (k != -1 && (x & (1LL << k))) { k--; ret++; }return ret;}int popcount(int x) { return __builtin_popcountll(x); }int unpopcount(int x) { return 64 - __builtin_clzll(x) - __builtin_popcountll(x); }int top_bit(int x) { return 63 - __builtin_clzll(x);} // 2^kの位int bot_bit(int x) { return __builtin_ctz(x);} // 2^kの位int MSB(int x) { return 1 << (63 - __builtin_clzll(x)); } // maskint LSB(int x) { return (x & -x); } // maskint bit_width(int x) { return 64 - __builtin_clzll(x); } // 桁数int ceil_log2(int x) { return 63 - __builtin_clzll(x); }int bit_floor(int x) { return 1 << (63 - __builtin_clzll(x)); }int floor_log2(int x) { return 64 - __builtin_clzll(x-1); }int bit_ceil(int x) { return 1 << (64 - __builtin_clzll(x-1)) - (x==1); }int hamming(int a, int b) { return popcount(a ^ b); }int compcnt(int x) { return (popcount(x^(x >> 1)) + (x&1)) / 2; }class UnionFind {public:UnionFind() = default;UnionFind(int N) : par(N), sz(N, 1) {iota(par.begin(), par.end(), 0);}int root(int x) {if (par[x] == x) return x;return (par[x] = root(par[x]));}bool unite(int x, int y) {int rx = root(x);int ry = root(y);if (rx == ry) return false;if (sz[rx] < sz[ry]) swap(rx, ry);sz[rx] += sz[ry];par[ry] = rx;return true;}bool issame(int x, int y) { return (root(x) == root(y)); }int size(int x) { return sz[root(x)]; }vector<vector<int>> groups(int N) {vector<vector<int>> G(N);for (int x = 0; x < N; x++) {G[root(x)].push_back(x);}G.erase(remove_if(G.begin(), G.end(),[&](const vector<int>& V) { return V.empty(); }),G.end());return G;}private:vector<int> par;vector<int> sz;};template<int mod> class Modint{public:int val = 0;Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }Modint(const Modint &r) { val = r.val; }Modint operator -() { return Modint(-val); } // 単項Modint operator +(const Modint &r) { return Modint(*this) += r; }Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }Modint operator -(const Modint &r) { return Modint(*this) -= r; }Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }Modint operator *(const Modint &r) { return Modint(*this) *= r; }Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }Modint operator /(const Modint &r) { return Modint(*this) /= r; }Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置Modint operator ++(signed) { ++*this; return *this; } // 後置Modint& operator --() { val--; if (val < 0) val += mod; return *this; }Modint operator --(signed) { --*this; return *this; }Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }Modint &operator /=(const Modint &r) {int a = r.val, b = mod, u = 1, v = 0;while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}val = val * u % mod; if (val < 0) val += mod;return *this;}Modint &operator /=(const int &q) {Modint r(q); int a = r.val, b = mod, u = 1, v = 0;while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}val = val * u % mod; if (val < 0) val += mod;return *this;}bool operator ==(const Modint& r) { return this -> val == r.val; }bool operator <(const Modint& r) { return this -> val < r.val; }bool operator >(const Modint& r) { return this -> val > r.val; }bool operator !=(const Modint& r) { return this -> val != r.val; }};using mint = Modint<MOD>;// using Mint = modint998244353;istream &operator >>(istream &is, mint& x) {int t; is >> t;x = t;return (is);}ostream &operator <<(ostream &os, const mint& x) {return os << x.val;}mint modpow(const mint &x, int n) {assert(n >= 0); // TODO: n <= -1if (n == 0) return 1;mint t = modpow(x, n / 2);t = t * t;if (n & 1) t = t * x;return t;}int modpow(__int128_t x, int n, int mod) {assert(n >= 0 && mod > 0); // TODO: n <= -1__int128_t ret = 1;while (n > 0) {if (n % 2 == 1) ret = ret * x % mod;x = x * x % mod;n /= 2;}return ret;}int modinv(__int128_t x, int mod) {assert(mod > 0 && x > 0);if (x == 1) return 1;return mod - modinv(mod % x, mod) * (mod / x) % mod;}istream &operator >>(istream &is, __int128_t& x) {string S; is >> S;__int128_t ret = 0;int f = 1;if (S[0] == '-') f = -1;for (int i = 0; i < S.length(); i++)if ('0' <= S[i] && S[i] <= '9')ret = ret * 10 + S[i] - '0';x = ret * f;return (is);}ostream &operator <<(ostream &os, __int128_t x) {ostream::sentry s(os);if (s) {__uint128_t tmp = x < 0 ? -x : x;char buffer[128];char *d = end(buffer);do {--d;*d = "0123456789"[tmp % 10];tmp /= 10;} while (tmp != 0);if (x < 0) {--d;*d = '-';}int len = end(buffer) - d;if (os.rdbuf()->sputn(d, len) != len) {os.setstate(ios_base::badbit);}}return os;}__int128_t stoll(string &S) {__int128_t ret = 0;int f = 1;if (S[0] == '-') f = -1;for (int i = 0; i < S.length(); i++)if ('0' <= S[i] && S[i] <= '9')ret = ret * 10 + S[i] - '0';return ret * f;}__int128_t gcd(__int128_t a, __int128_t b) {return b ? gcd(b, a % b) : a;}__int128_t lcm(__int128_t a, __int128_t b) {return a / gcd(a, b) * b;// lcmが__int128_tに収まる必要あり}string to_string(ld x, int k) { // xの小数第k位までをstring化するassert(k >= 0);stringstream ss;ss << setprecision(k + 2) << x;string s = ss.str();if (s.find('.') == string::npos) s += '.';int pos = s.find('.');for (int i = 0; k >= (int)s.size() - 1 - pos; i++) s += '0';s.pop_back();if (s.back() == '.') s.pop_back();return s;// stringstream ss; // 第k+1位を四捨五入して第k位まで返す// ss << setprecision(k + 1) << x;// string s = ss.str();// if (s.find('.') == string::npos) s += '.';// int pos = s.find('.');// for (int i = 0; k > (int)s.size() - 1 - pos; i++) s += '0';// if (s.back() == '.') s.pop_back();// return s;}string to_string(__int128_t x) {string ret = "";if (x < 0) {ret += "-";x *= -1;}while (x) {ret += (char)('0' + x % 10);x /= 10;}reverse(ret.begin(), ret.end());return ret;}string to_string(char c) {string s = "";s += c;return s;}struct SXor128 {uint64_t x = 88172645463325252LL;unsigned Int() {x = x ^ (x << 7);return x = x ^ (x >> 9);}unsigned Int(unsigned mod) {x = x ^ (x << 7);x = x ^ (x >> 9);return x % mod;}unsigned Int(unsigned l, unsigned r) {x = x ^ (x << 7);x = x ^ (x >> 9);return x % (r - l + 1) + l;}double Double() {return double(Int()) / UINT_MAX;}} rnd;struct custom_hash {static uint64_t splitmix64(uint64_t x) {x += 0x9e3779b97f4a7c15;x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;x = (x ^ (x >> 27)) * 0x94d049bb133111eb;return x ^ (x >> 31);}size_t operator()(uint64_t x) const {static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();return splitmix64(x + FIXED_RANDOM);}};template<class T> size_t HashCombine(const size_t seed,const T &v) {return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2));}template<class T,class S> struct hash<pair<T,S>>{size_t operator()(const pair<T,S> &keyval) const noexcept {return HashCombine(hash<T>()(keyval.first), keyval.second);}};template<class T> struct hash<vector<T>>{size_t operator()(const vector<T> &keyval) const noexcept {size_t s=0;for (auto&& v: keyval) s=HashCombine(s,v);return s;}};template<int N> struct HashTupleCore{template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{size_t s=HashTupleCore<N-1>()(keyval);return HashCombine(s,get<N-1>(keyval));}};template <> struct HashTupleCore<0>{template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; }};template<class... Args> struct hash<tuple<Args...>>{size_t operator()(const tuple<Args...> &keyval) const noexcept {return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval);}};vector<mint> _fac, _finv, _inv;void COMinit(int N) {_fac.resize(N + 1);_finv.resize(N + 1);_inv.resize(N + 1);_fac[0] = _fac[1] = 1;_finv[0] = _finv[1] = 1;_inv[1] = 1;for (int i = 2; i <= N; i++) {_fac[i] = _fac[i-1] * mint(i);_inv[i] = -_inv[MOD % i] * mint(MOD / i);_finv[i] = _finv[i - 1] * _inv[i];}}mint FAC(int N) {if (N < 0) return 0;return _fac[N];}mint COM(int N, int K) {if (N < K) return 0;if (N < 0 or K < 0) return 0;return _fac[N] * _finv[K] * _finv[N - K];}mint PERM(int N, int K) {if (N < K) return 0;if (N < 0 or K < 0) return 0;return _fac[N] * _finv[N - K];}mint NHK(int N, int K) {if (N == 0 && K == 0) return 1;return COM(N + K - 1, K);}#pragma endregionstruct Bit_Vector {int n, m;vector<uint64_t> bit;vector<int> sum;Bit_Vector(int n) : n(n), m((n + 63) / 64), bit(m), sum(m + 1) {}void set(int k) { bit[k / 64] |= 1ULL << (k % 64); }void build() {for (int i = 0; i < m; i++) {sum[i + 1] = sum[i] + __builtin_popcountll(bit[i]);}}bool operator[](int k) const { return (bit[k / 64] >> (k % 64)) & 1ULL; }int rank(int r, bool b) const {int one = sum[r / 64];if (r & 63) one += __builtin_popcountll(bit[r / 64] & ((1ULL << (r % 64)) - 1));return b ? one : r - one;}int rank(int l, int r, bool b) const { return rank(r, b) - rank(l, b); }};template<typename T>struct WaveletMatrix {int maxlog, n;vector<Bit_Vector> matrix;vector<int> zero_cnt;vector<vector<ll>> cs;WaveletMatrix(vector<T> data, ll max_v) : n(data.size()) {T min_v = n ? *min_element(data.begin(), data.end()) : 0;assert(0 <= min_v);maxlog = max(64 - __builtin_clzll(max_v), 1);matrix.resize(maxlog, Bit_Vector(n));cs.resize(maxlog, vector<ll>(n + 1));zero_cnt.resize(maxlog);vector<T> zero(n), one(n);for (int i = 0; i < maxlog; i++) {int z = 0, o = 0;for (int j = 0; j < n; j++) {if ((data[j] >> (maxlog - 1 - i)) & 1) {one[o++] = data[j];matrix[i].set(j);}else {zero[z++] = data[j];zero_cnt[i]++;}}matrix[i].build();data.swap(zero);for (int i = 0; i < o; i++) data[z + i] = one[i];for (int j = 0; j < n; j++) cs[i][j + 1] = cs[i][j] + data[j];}}T access(int k) {T ret = 0;for (int i = 0; i < maxlog; i++) {bool bit = matrix[i][k];ret = (ret << 1) | bit;k = matrix[i].rank(k, bit) + zero_cnt[i] * bit;}return ret;}int rank(int l, int r, T x) {for (int i = 0; i < maxlog; i++) {bool bit = (x >> (maxlog - 1 - i)) & 1;l = matrix[i].rank(l, bit) + zero_cnt[i] * bit;r = matrix[i].rank(r, bit) + zero_cnt[i] * bit;}return r - l;}T kth_smallest(int l, int r, int k) const {assert(0 <= k && k < r - l);T res = 0;for (int i = 0; i < maxlog; i++) {int zero = matrix[i].rank(l, r, 0);bool bit = k >= zero;l = matrix[i].rank(l, bit) + zero_cnt[i] * bit;r = matrix[i].rank(r, bit) + zero_cnt[i] * bit;res |= (T(1) << (maxlog - 1 - i)) * bit;k -= zero * bit;}return res;}T kth_largest(int l, int r, int k) { return kth_smallest(l, r, r - l - k - 1); }tuple<int, int, int> rank_all(int l, int r, T x) const {int lt_cnt = 0, eq_cnt = r - l , mt_cnt = 0;for (int i = 0; i < maxlog; i++) {int tmp = r - l;bool bit = (x >> (maxlog - 1 - i)) & 1;l = matrix[i].rank(l, bit) + zero_cnt[i] * bit;r = matrix[i].rank(r, bit) + zero_cnt[i] * bit;int d = tmp - (r - l);eq_cnt -= d;(bit ? lt_cnt : mt_cnt) += d;}return { lt_cnt, eq_cnt, mt_cnt };}int range_freq(int l, int r, T lower, T upper) {auto l_cnt = get<0>(rank_all(l, r, lower));auto r_cnt = get<0>(rank_all(l, r, upper));return r_cnt - l_cnt;}T prev_value(int l, int r, T upper) {int cnt = get<0>(rank_all(l, r, upper));return cnt == 0 ? T(-1) : kth_smallest(l, r, --cnt);}T next_value(int l, int r, T lower) {int cnt = get<0>(rank_all(l, r, lower));return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);}ll sum_less_than(int l, int r, T x) {ll ret = 0;for (int i = 0; i < maxlog; i++) {bool bit = (x >> (maxlog - 1 - i) & 1);if (bit) ret += cs[i][matrix[i].rank(r, 0)] - cs[i][matrix[i].rank(l, 0)];l = matrix[i].rank(l, bit) + zero_cnt[i] * bit;r = matrix[i].rank(r, bit) + zero_cnt[i] * bit;}return ret;}ll range_sum(int l, int r, T lower, T upper) {return sum_less_than(l, r, upper) - sum_less_than(l, r, lower);}};vector<int> flag; // dfs用vector<int> in; // 頂点iに行きがけで訪れた時刻vector<int> out; // 頂点iに帰りがけで訪れた時刻vector<int> id; // 時刻iに訪れた頂点の番号vector<int> depth; // 根からの深さint cnt = 0;void dfs(const vector<vector<int>> &G, int v) {in[v] = cnt++;id.pb(v);flag[v] = true;for (auto nv : G[v]) {if (flag[nv]) continue;depth[nv] = depth[v] + 1;dfs(G, nv);}out[v] = cnt++;id.pb(v);}signed main() {int N;cin >> N;vector<vector<int>> G(N);for (int i = 1; i < N; i++) {int p;cin >> p;G[p].pb(i);}flag.assign(N, false);depth.resize(N);in.resize(N);out.resize(N);dfs(G, 0);WaveletMatrix<int> WM(id, 1e6 + 1);int ans = 0;for (int i = 0; i < N; i++) {int l = in[i];int r = out[i];ans += WM.range_freq(l, r + 1, i + 1, 1e6) / 2;}cout << ans << endl;}