結果
問題 | No.2682 Visible Divisible |
ユーザー | zawakasu |
提出日時 | 2024-03-20 21:34:02 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 40 ms / 2,000 ms |
コード長 | 3,335 bytes |
コンパイル時間 | 2,378 ms |
コンパイル使用メモリ | 220,724 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-09-30 07:23:18 |
合計ジャッジ時間 | 4,069 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 37 ms
5,248 KB |
testcase_01 | AC | 38 ms
5,248 KB |
testcase_02 | AC | 36 ms
5,248 KB |
testcase_03 | AC | 36 ms
5,248 KB |
testcase_04 | AC | 33 ms
5,248 KB |
testcase_05 | AC | 33 ms
5,248 KB |
testcase_06 | AC | 36 ms
5,248 KB |
testcase_07 | AC | 35 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 39 ms
5,248 KB |
testcase_12 | AC | 40 ms
5,248 KB |
testcase_13 | AC | 37 ms
5,248 KB |
testcase_14 | AC | 37 ms
5,248 KB |
testcase_15 | AC | 36 ms
5,248 KB |
testcase_16 | AC | 34 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> namespace zawa { using i16 = std::int16_t; using i32 = std::int32_t; using i64 = std::int64_t; using i128 = __int128_t; using u8 = std::uint8_t; using u16 = std::uint16_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using usize = std::size_t; } // namespace zawa namespace zawa { void SetFastIO() { std::cin.tie(nullptr)->sync_with_stdio(false); } void SetPrecision(u32 dig) { std::cout << std::fixed << std::setprecision(dig); } } // namespace zawa using namespace zawa; namespace lib { // https://algo-method.com/tasks/553/editorial using namespace std; using namespace std; // Miller-Rabin 素数判定法 template<class T> T pow_mod(T A, T N, T M) { T res = 1 % M; A %= M; while (N) { if (N & 1) res = (res * A) % M; A = (A * A) % M; N >>= 1; } return res; } bool is_prime(long long N) { if (N <= 1) return false; if (N == 2 || N == 3) return true; if (N % 2 == 0) return false; vector<long long> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (a % N == 0) return true; long long t, x = pow_mod<__int128_t>(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = __int128_t(x) * x % N; } if (t == s) return false; } } return true; } // Pollard のロー法 long long gcd(long long A, long long B) { A = abs(A), B = abs(B); if (B == 0) return A; else return gcd(B, A % B); } long long pollard(long long N) { if (N % 2 == 0) return 2; if (is_prime(N)) return N; auto f = [&](long long x) -> long long { return (__int128_t(x) * x + 1) % N; }; long long step = 0; while (true) { ++step; long long x = step, y = f(x); while (true) { long long p = gcd(y - x + N, N); if (p == 0 || p == N) break; if (p != 1) return p; x = f(x); y = f(f(y)); } } } vector<long long> prime_factorize(long long N) { if (N == 1) return {}; long long p = pollard(N); if (p == N) return {p}; vector<long long> left = prime_factorize(p); vector<long long> right = prime_factorize(N / p); left.insert(left.end(), right.begin(), right.end()); sort(left.begin(), left.end()); return left; } } int main() { SetFastIO(); int n; std::cin >> n; long long k; std::cin >> k; auto p{lib::prime_factorize(k)}; std::map<long long, int> map; for (auto x : p) map[x]++; std::vector<std::pair<long long, int>> P(map.begin(), map.end()); std::vector<bool> can(n); for (int i{} ; i < n ; i++) { long long a; std::cin >> a; for (int j{} ; j < (int)P.size() ; j++) { if (can[j]) continue; int cnt{}; while (a % P[j].first == 0) { cnt++; a /= P[j].first; } can[j] = P[j].second <= cnt; } } bool ans{true}; for (int i{} ; i < (int)P.size() ; i++) { ans &= can[i]; } std::cout << (ans ? "Yes" : "No") << '\n'; }