結果
| 問題 |
No.2685 Cell Proliferation (Easy)
|
| コンテスト | |
| ユーザー |
bortik
|
| 提出日時 | 2024-03-20 22:11:02 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 6 ms / 2,000 ms |
| コード長 | 6,930 bytes |
| コンパイル時間 | 4,330 ms |
| コンパイル使用メモリ | 267,524 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-11-15 05:45:46 |
| 合計ジャッジ時間 | 5,494 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template<typename T>
bool chmax(T& a, const T& b) {
bool res = a < b;
a = max(a, b);
return res;
}
template<typename T>
bool chmin(T& a, const T& b){
bool res = a > b;
a = min(a, b);
return res;
}
typedef vector<long long> vl;
typedef pair<ll,ll> pll;
typedef vector<pair<ll, ll>> vll;
typedef vector<int> vi;
typedef vector<pair<int,int>> vii;
typedef pair<int,int> pii;
const int inf = 1000000009;
const ll linf = 4000000000000000009;
// https://trap.jp/post/1224/
template<class... T>
void input(T&... a){
(cin >> ... >> a);
}
void print(){
cout << '\n';
}
template<class T, class... Ts>
void print(const T& a, const Ts&... b){
cout << a;
(cout << ... << (cout << ' ', b));
cout << '\n';
}
#define rep1(a) for(int i = 0; i < a; i++)
#define rep2(i, a) for(int i = 0; i < a; i++)
#define rep3(i, a, b) for(int i = a; i < b; i++)
#define rep4(i, a, b, c) for(int i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
//---------------------------------
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
template <int m>
struct modint{
using mint = modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
modint() : _v(0) {}
template<class T>
modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if(x < 0) x += umod();
_v = (unsigned int)(x);
}
unsigned int val() const { return _v; }
mint& operator--(){
if(_v == 0) _v = umod();
_v--;
return *this;
}
mint& operator++(){
_v++;
if(_v == umod()) _v = 0;
return *this;
}
mint& operator++(int) {
mint result = *this;
++*this;
return result;
}
mint& operator--(int){
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs){
_v += rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs){
_v -= rhs._v;
if(_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs){
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = is_prime<m>;
};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
using mint = modint998244353;
void solve(){
int p1,p2,q1,q2,t; input(p1,p2,q1,q2,t);
vector<mint> cell(t+1, mint(0));
cell[0] = mint(1);
mint c1 = mint(p1)/mint(p2);
mint c2 = mint(q1)/mint(q2);
vector<mint> die(t+1);
die[0] = 1;
rep(i, 1, t+1) die[i] = die[i-1]*c2;
rep(i, 1, t+1){
rep(j, 0, i){
cell[i] += cell[j] * c1;
cell[j] *= die[i-j];
}
}
mint ans = accumulate(cell.begin(), cell.end(), mint(0));
print(ans.val());
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t = 1;
//cin >> t;
rep(i,0,t) solve();
}
bortik