結果
| 問題 |
No.2683 Two Sheets
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-03-20 22:14:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 15 ms / 2,000 ms |
| コード長 | 6,897 bytes |
| コンパイル時間 | 3,469 ms |
| コンパイル使用メモリ | 238,368 KB |
| 最終ジャッジ日時 | 2025-02-20 09:20:14 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 |
ソースコード
// https://yukicoder.me/submissions/904295
#include <bits/stdc++.h>
#include <atcoder/modint>
#include <atcoder/convolution>
using namespace std;
using namespace atcoder;
using ll = long long;
using mint = modint998244353;
const ll MAX = 1e6+10;
vector<mint> f, finv;
mint inv(mint x){
mint ans = 1;
ll e = 998244351;
while (e > 0){
if ((e & 1LL)) ans *= x;
e = e >> 1LL;
x *= x;
}
return ans;
}
void init(){
f.resize(MAX+1); finv.resize(MAX+1);
f[0] = 1;
for (int i=1; i<=MAX; i++) f[i] = f[i-1]*i;
finv[MAX] = inv(f[MAX]);
for (int i=MAX-1; i>=0; i--) finv[i] = finv[i+1] * (i+1);
}
mint C(ll n, ll k){
if (n < k || k < 0) return 0;
return f[n] * finv[k] * finv[n-k] ;
}
template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
for (int i=0; i<min(n, m); i++) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
for (int i=0; i<min(n, m); i++) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2*m));
F r(res);
f.resize(2*m), internal::butterfly(f);
r.resize(2*m), internal::butterfly(r);
for (int i=0; i<2*m; i++) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2*m), internal::butterfly(f);
for (int i=0; i<2*m; i++) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2*m).inv(); iz *= -iz;
for (int i=0; i<m; i++) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// fast: FMT-friendly modulus only
F &operator*=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
F &operator/=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
for (int i=n-1; i>=0; i--){
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
for (int i=0; i<n; i++){
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) for (int i=n-d-1; i>=0; i--) (*this)[i+d] += (*this)[i];
else if (c == T(-1)) for (int i=n-d-1; i>=0; i--) (*this)[i+d] -= (*this)[i];
else for (int i=n-d-1; i>=0; i--) (*this)[i+d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) for (int i=0; i<n-d; i++) (*this)[i+d] -= (*this)[i];
else if (c == T(-1)) for (int i=0; i<n-d; i++) (*this)[i+d] += (*this)[i];
else for (int i=0; i<n-d; i++) (*this)[i+d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using mint = modint998244353;
using fps = FormalPowerSeries<mint>;
int main(){
init();
ll A, B;
ll H, W, N, K, hx, wx, hy, wy;
mint c, ans, M;
// cin >> H >> W >> N >> K;
cin >> H >> W >> A >> B;
N = 2;
vector<mint> hps(N+1), wps(N+1), hs(N+1), ws(N+1);
fps a(N+1), b(N+1);
if (A*2 <= H){
hx = A-1; hy = H-A*2+2;
}
else{
hx = H-A; hy = H-(H-A)*2;
}
if (B*2 <= W){
wx = B-1; wy = W-B*2+2;
}
else{
wx = W-B; wy = W-(W-B)*2;
}
c = 1;
for (int i=0; i<=N; i++){
b[i] = finv[i+1];
c *= hx+1;
a[i] = c * finv[i+1];
}
a *= b.inv();
for (int i=0; i<=N; i++) hps[i] = a[i] * f[i];
hps[0] -= 1;
c = 1;
for (int i=0; i<=N; i++){
b[i] = finv[i+1];
c *= wx+1;
a[i] = c * finv[i+1];
}
a *= b.inv();
for (int i=0; i<=N; i++) wps[i] = a[i] * f[i];
wps[0] -= 1;
ans = (hx * 2 + hy) * (wx * 2 + wy);
c = 1;
for (int i=0; i<=N; i++){
hs[i] = hps[i] * 2 + c * hy;
c *= hx+1;
}
c = 1;
for (int i=0; i<=N; i++){
ws[i] = wps[i] * 2 + c * wy;
c *= wx+1;
}
M = -mint((H-A+1) * (W-B+1)).inv();
c = 1;
for (int i=0; i<=N; i++){
ans -= c * C(N, i) * hs[i] * ws[i];
c *= M;
}
cout << ans.val() << endl;
return 0;
}