結果
問題 | No.2682 Visible Divisible |
ユーザー | FromBooska |
提出日時 | 2024-03-20 22:14:51 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 153 ms / 2,000 ms |
コード長 | 3,497 bytes |
コンパイル時間 | 166 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 115,752 KB |
最終ジャッジ日時 | 2024-09-30 08:09:47 |
合計ジャッジ時間 | 3,335 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 143 ms
114,272 KB |
testcase_01 | AC | 134 ms
111,220 KB |
testcase_02 | AC | 132 ms
112,200 KB |
testcase_03 | AC | 131 ms
112,528 KB |
testcase_04 | AC | 121 ms
106,072 KB |
testcase_05 | AC | 115 ms
106,068 KB |
testcase_06 | AC | 118 ms
105,640 KB |
testcase_07 | AC | 118 ms
105,076 KB |
testcase_08 | AC | 40 ms
52,096 KB |
testcase_09 | AC | 40 ms
52,352 KB |
testcase_10 | AC | 39 ms
52,224 KB |
testcase_11 | AC | 153 ms
114,048 KB |
testcase_12 | AC | 137 ms
114,432 KB |
testcase_13 | AC | 130 ms
114,048 KB |
testcase_14 | AC | 141 ms
115,428 KB |
testcase_15 | AC | 139 ms
115,752 KB |
testcase_16 | AC | 130 ms
107,372 KB |
ソースコード
# aの素因数の最高次で、Kの素因数分解をカバーできるか、でどうか # ポラード・ローでKの素因数分解はできるが、aをいちいち素因数分解したら間に合わないだろう # ポラード・ロー素因数分解法 # https://qiita.com/t_fuki/items/7cd50de54d3c5d063b4a#%E3%83%9D%E3%83%A9%E3%83%BC%E3%83%89%E3%83%AD%E3%83%BC%E7%B4%A0%E5%9B%A0%E6%95%B0%E5%88%86%E8%A7%A3%E6%B3%95%E3%81%AE%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0 def gcd(a, b): while a: a, b = b%a, a return b def is_prime(n): if n == 2: return 1 if n == 1 or n%2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length()-1 d = m // lsb test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in test_numbers: if a == n: continue x = pow(a,d,n) r = 0 if x == 1: continue while x != m: x = pow(x,2,n) r += 1 if x == 1 or r == s: return 0 return 1 def find_prime_factor(n): if n%2 == 0: return 2 m = int(n**0.125)+1 for c in range(1,n): f = lambda a: (pow(a,2,n)+c)%n y = 0 g = q = r = 1 k = 0 while g == 1: x = y while k < 3*r//4: y = f(y) k += 1 while k < r and g == 1: ys = y for _ in range(min(m, r-k)): y = f(y) q = q*abs(x-y)%n g = gcd(q,n) k += m k = r r *= 2 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x-y),n) if g == n: continue if is_prime(g): return g elif is_prime(n//g): return n//g else: return find_prime_factor(g) def factorize(n): res = {} while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す p = find_prime_factor(n) s = 0 while n%p == 0: # nが素因数pで割れる間割り続け、出力に追加 n //= p s += 1 res[p] = s if n > 1: # n>1であればnは素数なので出力に追加 res[n] = 1 return res # 高速約数列挙 def divisors(num): factors = factorize(num) divs = [1] for p in factors: e = factors[p] if e > 0: k = len(divs) #それまでの素因数積、つまり約数、の数 for i in range(e*k): divs.append(divs[-k]*p) #なぜans[-k]なのか、どんどんappendするので[-k]で前の約数にかけていく return divs # 高速約数カウント def divisor_count(num): factors = factorize(num) count = 1 for p in factors: e = factors[p] count *= (e+1) return count N, K = map(int, input().split()) factors = factorize(K) #print(factors) A = list(map(int, input().split())) for i in range(N): a = A[i] remove = [] for p in factors: #print('a', a, 'p', p) count = 0 while a%p == 0: a //= p count += 1 if count >= factors[p]: remove.append(p) for r in remove: factors.pop(r) if len(factors) == 0: print('Yes') else: print('No')