結果
問題 | No.2682 Visible Divisible |
ユーザー | udon1206 |
提出日時 | 2024-03-20 22:21:02 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 73 ms / 2,000 ms |
コード長 | 6,835 bytes |
コンパイル時間 | 2,577 ms |
コンパイル使用メモリ | 217,104 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-09-30 08:17:13 |
合計ジャッジ時間 | 4,497 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 51 ms
5,248 KB |
testcase_01 | AC | 72 ms
5,248 KB |
testcase_02 | AC | 73 ms
5,248 KB |
testcase_03 | AC | 68 ms
5,248 KB |
testcase_04 | AC | 40 ms
5,248 KB |
testcase_05 | AC | 40 ms
5,248 KB |
testcase_06 | AC | 42 ms
5,248 KB |
testcase_07 | AC | 39 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 51 ms
5,248 KB |
testcase_12 | AC | 46 ms
5,248 KB |
testcase_13 | AC | 41 ms
5,248 KB |
testcase_14 | AC | 69 ms
5,248 KB |
testcase_15 | AC | 57 ms
5,248 KB |
testcase_16 | AC | 48 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using ll = long long; using std::cin; using std::cout; using std::endl; std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count()); template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return 1; } return 0; } constexpr int inf = (int)1e9 + 7; constexpr long long INF = 1LL << 60; namespace FastPrimeFactorization { using namespace std; template <typename word, typename dword, typename sword> struct UnsafeMod { UnsafeMod() : x(0) {} UnsafeMod(word _x) : x(init(_x)) {} bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; } bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; } UnsafeMod &operator+=(const UnsafeMod &rhs) { if ((x += rhs.x) >= mod) x -= mod; return *this; } UnsafeMod &operator-=(const UnsafeMod &rhs) { if (sword(x -= rhs.x) < 0) x += mod; return *this; } UnsafeMod &operator*=(const UnsafeMod &rhs) { x = reduce(dword(x) * rhs.x); return *this; } UnsafeMod operator+(const UnsafeMod &rhs) const { return UnsafeMod(*this) += rhs; } UnsafeMod operator-(const UnsafeMod &rhs) const { return UnsafeMod(*this) -= rhs; } UnsafeMod operator*(const UnsafeMod &rhs) const { return UnsafeMod(*this) *= rhs; } UnsafeMod pow(uint64_t e) const { UnsafeMod ret(1); for (UnsafeMod base = *this; e; e >>= 1, base *= base) { if (e & 1) ret *= base; } return ret; } word get() const { return reduce(x); } static constexpr int word_bits = sizeof(word) * 8; static word modulus() { return mod; } static word init(word w) { return reduce(dword(w) * r2); } static void set_mod(word m) { mod = m; inv = mul_inv(mod); r2 = -dword(mod) % mod; } static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; } static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); } static word mod, inv, r2; word x; }; using uint128_t = __uint128_t; using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>; template <> uint64_t Mod64::mod = 0; template <> uint64_t Mod64::inv = 0; template <> uint64_t Mod64::r2 = 0; using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>; template <> uint32_t Mod32::mod = 0; template <> uint32_t Mod32::inv = 0; template <> uint32_t Mod32::r2 = 0; bool miller_rabin_primality_test_uint64(uint64_t n) { Mod64::set_mod(n); uint64_t d = n - 1; while (d % 2 == 0) d /= 2; Mod64 e{1}, rev{n - 1}; // http://miller-rabin.appspot.com/ < 2^64 for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (n <= a) break; uint64_t t = d; Mod64 y = Mod64(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_primality_test_uint32(uint32_t n) { Mod32::set_mod(n); uint32_t d = n - 1; while (d % 2 == 0) d /= 2; Mod32 e{1}, rev{n - 1}; for (uint32_t a : {2, 7, 61}) { if (n <= a) break; uint32_t t = d; Mod32 y = Mod32(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(uint64_t n) { if (n == 2) return true; if (n == 1 || n % 2 == 0) return false; if (n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n); return miller_rabin_primality_test_uint64(n); } uint64_t pollard_rho(uint64_t n) { if (is_prime(n)) return n; if (n % 2 == 0) return 2; Mod64::set_mod(n); uint64_t d; Mod64 one{1}; for (Mod64 c{one};; c += one) { Mod64 x{2}, y{2}; do { x = x * x + c; y = y * y + c; y = y * y + c; d = __gcd((x - y).get(), n); } while (d == 1); if (d < n) return d; } assert(0); } vector<uint64_t> prime_factor(uint64_t n) { if (n <= 1) return {}; uint64_t p = pollard_rho(n); if (p == n) return {p}; auto l = prime_factor(p); auto r = prime_factor(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } }; void solve() { ll n, K; cin >> n >> K; std::vector<ll> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } std::map<ll, ll> prime_factors; { auto prime_factors_ = FastPrimeFactorization::prime_factor(K); for (auto &p : prime_factors_) { prime_factors[p]++; } } std::map<ll, ll> cnt; for (const auto &e : a) { ll t = e; for (const auto &p : prime_factors) { int c = 0; while (t % p.first == 0) { t /= p.first; c++; } chmax(cnt[p.first], (ll)c); } } for (const auto &[p, c] : prime_factors) { if (cnt[p] < c) { cout << "No" << "\n"; return; } } cout << "Yes" << "\n"; } int main() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); int kkt = 1; // cin >> kkt; while (kkt--) { solve(); } }