結果
| 問題 |
No.2682 Visible Divisible
|
| コンテスト | |
| ユーザー |
udon1206
|
| 提出日時 | 2024-03-20 22:21:02 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 72 ms / 2,000 ms |
| コード長 | 6,835 bytes |
| コンパイル時間 | 2,374 ms |
| コンパイル使用メモリ | 210,596 KB |
| 最終ジャッジ日時 | 2025-02-20 09:24:54 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 |
ソースコード
#include <bits/stdc++.h>
using ll = long long;
using std::cin;
using std::cout;
using std::endl;
std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count());
template <class T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return 1;
}
return 0;
}
constexpr int inf = (int)1e9 + 7;
constexpr long long INF = 1LL << 60;
namespace FastPrimeFactorization
{
using namespace std;
template <typename word, typename dword, typename sword>
struct UnsafeMod
{
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod &rhs) const
{
return x == rhs.x;
}
bool operator!=(const UnsafeMod &rhs) const
{
return x != rhs.x;
}
UnsafeMod &operator+=(const UnsafeMod &rhs)
{
if ((x += rhs.x) >= mod)
x -= mod;
return *this;
}
UnsafeMod &operator-=(const UnsafeMod &rhs)
{
if (sword(x -= rhs.x) < 0)
x += mod;
return *this;
}
UnsafeMod &operator*=(const UnsafeMod &rhs)
{
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod &rhs) const
{
return UnsafeMod(*this) += rhs;
}
UnsafeMod operator-(const UnsafeMod &rhs) const
{
return UnsafeMod(*this) -= rhs;
}
UnsafeMod operator*(const UnsafeMod &rhs) const
{
return UnsafeMod(*this) *= rhs;
}
UnsafeMod pow(uint64_t e) const
{
UnsafeMod ret(1);
for (UnsafeMod base = *this; e; e >>= 1, base *= base)
{
if (e & 1)
ret *= base;
}
return ret;
}
word get() const
{
return reduce(x);
}
static constexpr int word_bits = sizeof(word) * 8;
static word modulus()
{
return mod;
}
static word init(word w)
{
return reduce(dword(w) * r2);
}
static void set_mod(word m)
{
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x)
{
word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1)
{
return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>;
template <>
uint64_t Mod64::mod = 0;
template <>
uint64_t Mod64::inv = 0;
template <>
uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>;
template <>
uint32_t Mod32::mod = 0;
template <>
uint32_t Mod32::inv = 0;
template <>
uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n)
{
Mod64::set_mod(n);
uint64_t d = n - 1;
while (d % 2 == 0)
d /= 2;
Mod64 e{1}, rev{n - 1};
// http://miller-rabin.appspot.com/ < 2^64
for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022})
{
if (n <= a)
break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while (t != n - 1 && y != e && y != rev)
{
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n)
{
Mod32::set_mod(n);
uint32_t d = n - 1;
while (d % 2 == 0)
d /= 2;
Mod32 e{1}, rev{n - 1};
for (uint32_t a : {2, 7, 61})
{
if (n <= a)
break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while (t != n - 1 && y != e && y != rev)
{
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool is_prime(uint64_t n)
{
if (n == 2)
return true;
if (n == 1 || n % 2 == 0)
return false;
if (n < uint64_t(1) << 31)
return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n)
{
if (is_prime(n))
return n;
if (n % 2 == 0)
return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for (Mod64 c{one};; c += one)
{
Mod64 x{2}, y{2};
do
{
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = __gcd((x - y).get(), n);
} while (d == 1);
if (d < n)
return d;
}
assert(0);
}
vector<uint64_t> prime_factor(uint64_t n)
{
if (n <= 1)
return {};
uint64_t p = pollard_rho(n);
if (p == n)
return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
};
void solve()
{
ll n, K;
cin >> n >> K;
std::vector<ll> a(n);
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
std::map<ll, ll> prime_factors;
{
auto prime_factors_ = FastPrimeFactorization::prime_factor(K);
for (auto &p : prime_factors_)
{
prime_factors[p]++;
}
}
std::map<ll, ll> cnt;
for (const auto &e : a)
{
ll t = e;
for (const auto &p : prime_factors)
{
int c = 0;
while (t % p.first == 0)
{
t /= p.first;
c++;
}
chmax(cnt[p.first], (ll)c);
}
}
for (const auto &[p, c] : prime_factors)
{
if (cnt[p] < c)
{
cout << "No"
<< "\n";
return;
}
}
cout << "Yes"
<< "\n";
}
int main()
{
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
int kkt = 1;
// cin >> kkt;
while (kkt--)
{
solve();
}
}
udon1206