結果
問題 | No.2682 Visible Divisible |
ユーザー | Nikkuniku029 |
提出日時 | 2024-03-20 22:32:41 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 136 ms / 2,000 ms |
コード長 | 2,362 bytes |
コンパイル時間 | 343 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 112,000 KB |
最終ジャッジ日時 | 2024-09-30 08:34:33 |
合計ジャッジ時間 | 3,436 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 124 ms
111,536 KB |
testcase_01 | AC | 124 ms
111,760 KB |
testcase_02 | AC | 117 ms
106,056 KB |
testcase_03 | AC | 127 ms
111,732 KB |
testcase_04 | AC | 111 ms
106,048 KB |
testcase_05 | AC | 108 ms
105,916 KB |
testcase_06 | AC | 111 ms
105,728 KB |
testcase_07 | AC | 105 ms
105,300 KB |
testcase_08 | AC | 40 ms
53,760 KB |
testcase_09 | AC | 38 ms
54,528 KB |
testcase_10 | AC | 40 ms
54,400 KB |
testcase_11 | AC | 136 ms
112,000 KB |
testcase_12 | AC | 132 ms
111,988 KB |
testcase_13 | AC | 119 ms
105,808 KB |
testcase_14 | AC | 127 ms
111,752 KB |
testcase_15 | AC | 134 ms
110,768 KB |
testcase_16 | AC | 132 ms
111,708 KB |
ソースコード
def gcd(a, b): while a: a, b = b % a, a return b def is_prime(n): if n == 2: return 1 if n == 1 or n % 2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length() - 1 d = m // lsb test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in test_numbers: if a == n: continue x = pow(a, d, n) r = 0 if x == 1: continue while x != m: x = pow(x, 2, n) r += 1 if x == 1 or r == s: return 0 return 1 def find_prime_factor(n): if n % 2 == 0: return 2 m = int(n**0.125) + 1 for c in range(1, n): f = lambda a: (pow(a, 2, n) + c) % n y = 0 g = q = r = 1 k = 0 while g == 1: x = y while k < 3 * r // 4: y = f(y) k += 1 while k < r and g == 1: ys = y for _ in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m k = r r *= 2 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x - y), n) if g == n: continue if is_prime(g): return g elif is_prime(n // g): return n // g else: return find_prime_factor(g) def factorize(n): res = {} while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す p = find_prime_factor(n) s = 0 while n % p == 0: # nが素因数pで割れる間割り続け、出力に追加 n //= p s += 1 res[p] = s if n > 1: # n>1であればnは素数なので出力に追加 res[n] = 1 return res N, K = map(int, input().split()) A = list(map(int, input().split())) from collections import defaultdict d = defaultdict(bool) P = factorize(K) S = set() for k, v in P.items(): d[pow(k, v)] = False S.add(pow(k, v)) for a in A: for s in S: if a % s == 0: d[s] = True S.discard(s) break ans = "Yes" if len(S) == 0 else "No" print(ans)