結果
問題 | No.2685 Cell Proliferation (Easy) |
ユーザー |
👑 |
提出日時 | 2024-03-20 23:41:40 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 12,548 bytes |
コンパイル時間 | 5,164 ms |
コンパイル使用メモリ | 273,492 KB |
最終ジャッジ日時 | 2025-02-20 10:15:05 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 26 |
ソースコード
#include<bits/stdc++.h>#include<atcoder/all>#define rep(i,n) for(int i=0;i<n;i++)using namespace std;using namespace atcoder;typedef long long ll;typedef vector<int> vi;typedef vector<long long> vl;typedef vector<vector<int>> vvi;typedef vector<vector<long long>> vvl;typedef long double ld;typedef pair<int, int> P;ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); returnos;}template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : "");return os;}template<typename T> void chmin(T& a, T b){a = min(a, b);}template<typename T> void chmax(T& a, T b){a = max(a, b);}using mint = modint998244353;// combination mod prime// https://youtu.be/8uowVvQ_-Mo?t=6002// https://youtu.be/Tgd_zLfRZOQ?t=9928struct modinv {int n; vector<mint> d;modinv(): n(2), d({0,1}) {}mint operator()(int i) {while (n <= i) d.push_back(-d[mint::mod()%n]*(mint::mod()/n)), ++n;return d[i];}mint operator[](int i) const { return d[i];}} invs;struct modfact {int n; vector<mint> d;modfact(): n(2), d({1,1}) {}mint operator()(int i) {while (n <= i) d.push_back(d.back()*n), ++n;return d[i];}mint operator[](int i) const { return d[i];}} facts;struct modfactinv {int n; vector<mint> d;modfactinv(): n(2), d({1,1}) {}mint operator()(int i) {while (n <= i) d.push_back(d.back()*invs(n)), ++n;return d[i];}mint operator[](int i) const { return d[i];}} ifacts;mint comb(int n, int k) {if (n < k || k < 0) return 0;return facts(n)*ifacts(k)*ifacts(n-k);}template< typename T >struct FormalPowerSeries : vector< T > {using vector< T >::vector;using P = FormalPowerSeries;template<class...Args> FormalPowerSeries(Args...args): vector<T>(args...) {}FormalPowerSeries(initializer_list<T> a): vector<T>(a.begin(),a.end()) {}using MULT = function< P(P, P) >;static MULT &get_mult() {static MULT mult = [&](P a, P b){P res(convolution(a, b));return res;};return mult;}static void set_fft(MULT f) {get_mult() = f;}void shrink() {while(this->size() && this->back() == T(0)) this->pop_back();}P operator+(const P &r) const { return P(*this) += r; }P operator+(const T &v) const { return P(*this) += v; }P operator-(const P &r) const { return P(*this) -= r; }P operator-(const T &v) const { return P(*this) -= v; }P operator*(const P &r) const { return P(*this) *= r; }P operator*(const T &v) const { return P(*this) *= v; }P operator/(const P &r) const { return P(*this) /= r; }P operator%(const P &r) const { return P(*this) %= r; }P &operator+=(const P &r) {if(r.size() > this->size()) this->resize(r.size());for(int i = 0; i < int(r.size()); i++) (*this)[i] += r[i];return *this;}P &operator+=(const T &r) {if(this->empty()) this->resize(1);(*this)[0] += r;return *this;}P &operator-=(const P &r) {if(r.size() > this->size()) this->resize(r.size());for(int i = 0; i < int(r.size()); i++) (*this)[i] -= r[i];shrink();return *this;}P &operator-=(const T &r) {if(this->empty()) this->resize(1);(*this)[0] -= r;shrink();return *this;}P &operator*=(const T &v) {const int n = (int) this->size();for(int k = 0; k < n; k++) (*this)[k] *= v;return *this;}P &operator*=(const P &r) {if(this->empty() || r.empty()) {this->clear();return *this;}assert(get_mult() != nullptr);return *this = get_mult()(*this, r);}P &operator%=(const P &r) {return *this -= *this / r * r;}P operator-() const {P ret(this->size());for(int i = 0; i < int(this->size()); i++) ret[i] = -(*this)[i];return ret;}P &operator/=(const P &r) {if(this->size() < r.size()) {this->clear();return *this;}int n = this->size() - r.size() + 1;return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);}P pre(int sz) const {return P(begin(*this), begin(*this) + min((int) this->size(), sz));}P operator>>(int sz) const {if((int)this->size() <= sz) return {};P ret(*this);ret.erase(ret.begin(), ret.begin() + sz);return ret;}P operator<<(int sz) const {P ret(*this);ret.insert(ret.begin(), sz, T(0));return ret;}P rev(int deg = -1) const {P ret(*this);if(deg != -1) ret.resize(deg, T(0));reverse(begin(ret), end(ret));return ret;}P diff() const {const int n = (int) this->size();P ret(max(0, n - 1));for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);return ret;}P integral() const {const int n = (int) this->size();P ret(n + 1);ret[0] = T(0);for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);return ret;}// F(0) must not be 0P inv(int deg = -1) const {assert(((*this)[0]) != T(0));const int n = (int) this->size();if(deg == -1) deg = n;P ret({T(1) / (*this)[0]});for(int i = 1; i < deg; i <<= 1) {ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);}return ret.pre(deg);}// F(0) must be 1P log(int deg = -1) const {assert((*this)[0] == 1);const int n = (int) this->size();if(deg == -1) deg = n;return (this->diff() * this->inv(deg)).pre(deg - 1).integral();}P sqrt(int deg = -1) const {const int n = (int) this->size();if(deg == -1) deg = n;if((*this)[0] == T(0)) {for(int i = 1; i < n; i++) {if((*this)[i] != T(0)) {if(i & 1) return {};if(deg - i / 2 <= 0) break;auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);if(int(ret.size()) < deg) ret.resize(deg, T(0));return ret;}}return P(deg, 0);}P ret({T(1)});T inv2 = T(1) / T(2);for(int i = 1; i < deg; i <<= 1) {ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;}return ret.pre(deg);}// F(0) must be 0P exp(int deg = -1) const {assert((*this)[0] == T(0));const int n = (int) this->size();if(deg == -1) deg = n;P ret({T(1)});for(int i = 1; i < deg; i <<= 1) {ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);}return ret.pre(deg);}P pow(int k, int deg = -1) const {const int n = (int) this->size();if(deg == -1) deg = n;for(int i = 0; i < n; i++) {if((*this)[i] != T(0)) {T rev = T(1) / (*this)[i];P C(*this * rev);P D(n - i);for(int j = i; j < n; j++) D[j - i] = C[j];D = (D.log() * T(k)).exp() * (*this)[i].pow(k);P E(deg);if(i * k > deg) return E;auto S = i * k;for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j];return E;}}return *this;}P taylor_shift(T x) const {const int n = (int) this->size();P p(n), q(n);for(int i = 0; i < n; i++) p[i] = facts(i) * (*this)[i];for(int i = 0; i < n; i++) q[i] = ifacts(n - 1 - i) * x.pow(n - 1 - i);p *= q;p = p >> (n - 1);for(int i = 0; i < n; i++) p[i] *= ifacts(i);return p;}T get(int idx){assert(idx >= 0);if(idx < int(this->size())) return (*this)[idx];else return T(0);}void set(int idx, T x){assert(idx >= 0);if(idx < int(this->size())) (*this)[idx] = x;else{this->resize(idx + 1);T(0);}return;}T eval(T x) const {T r = 0, w = 1;for(auto &v : *this) {r += w * v;w *= x;}return r;}};template<typename T>T Bostan_Mori(FormalPowerSeries<T> P, FormalPowerSeries<T> Q, ll n){assert(P.size() == Q.size());if(n == 0) return P[0] / Q[0];const int k = P.size();FormalPowerSeries<T> R = Q;rep(i, k) if(i % 2 == 1) R[i] *= (T)-1;P *= R;Q *= R;FormalPowerSeries<T> U(k), V(k);if(n % 2 == 1) rep(i, k - 1) U[i] = P[2 * i + 1];else rep(i, k) U[i] = P[2 * i];rep(i, k) V[i] = Q[2 * i];return Bostan_Mori(U, V, n / 2);}// C = A * B in the full_relaxed way// c_i = \sigma_{j = 0}^{i} a_{j} b_{i - j}// Postulate: at the point of i, all of the a_j, b_j (0 <= j <= i) are known// O(N(longN)^2)// 5e5 * 5e5 -> 3300 ms// https://judge.yosupo.jp/submission/167521template<typename T>void convolution_online(FormalPowerSeries<T>& a, FormalPowerSeries<T>& b, FormalPowerSeries<T>& c, int idx){assert(int(c.size()) >= int(a.size()) + int(b.size()) - 1);int two = 1;rep(_, 30){if(idx == 0 and two >= 2) break;if(!(idx % two == max(0, two - 2))) break;{FormalPowerSeries<T> a1(two), b1(two), c1;rep(i, two){a1[i] = a[(two - 1) + i]; b1[i] = b[idx - (two - 1) + i];}c1 = a1 * b1;rep(i, two * 2 - 1) c[idx + i] += c1[i];}if(idx == (two - 1) * 2) break;{FormalPowerSeries<T> a2(two), b2(two), c2;rep(i, two){a2[i] = a[idx - (two - 1) + i]; b2[i] = b[(two - 1) + i];}c2 = a2 * b2;rep(i, two * 2 - 1) c[idx + i] += c2[i];}two *= 2;}}namespace sparse{// f^k (mod x^n)for sparse FPS f// O(N * M) (M is for # of terms of f)// Requirement : f0 = 1vector<mint> pow(vector<pair<int, mint>> f, int N, mint k){assert(int(f.size()) > 0);assert(f[0].first == 0);assert(f[0].second == (mint)1);vector<pair<int, mint>> f_prime;for(auto [n, c] : f) if(n > 0) f_prime.emplace_back(n - 1, c * n);vector<mint> F(N);vector<mint> F_prime(N);F[0] = 1;rep(n, N - 1){mint res = 0;for(auto [m, c] : f){if(m == 0) continue;if(m > n) break;res -= c * F_prime[n - m];}for(auto [m, c] : f_prime){if(m > n) break;res += k * c * F[n - m];}F_prime[n] = res;F[n + 1] = res / (n + 1);}return F;}// exp(f) (mod x^n)for sparse FPS f// O(N * M) (M is for # of terms of f)// Requirement : f0 = 0vector<mint> exp(vector<pair<int, mint>> f, int N){assert(int(f.size()) > 0);assert(f[0].first > 0 or f[0].second == 0);vector<pair<int, mint>> f_prime;for(auto [n, c] : f) if(n > 0) f_prime.emplace_back(n - 1, c * n);vector<mint> F(N);vector<mint> F_prime(N);F[0] = 1;rep(n, N - 1){mint res = 0;for(auto [m, c] : f_prime){if(m > n) break;res += c * F[n - m];}F_prime[n] = res;F[n + 1] = res / (n + 1);}return F;}// g / f (mod x^n for sparse FPS f and not sparse FPS g// O(N * M) (M is for # of terms of f)// Requirement : f0 = 1vector<mint> quotient(vector<mint> g, vector<pair<int, mint>> f, int N){assert(int(g.size()) == N);assert(int(f.size()) > 0);assert(f[0].first == 0);assert(f[0].second == (mint)1);vector<mint> F(N);F[0] = g[0];for(int n = 1; n < N; n++){mint res = g[n];for(auto [m, c] : f){if(m == 0) continue;if(m > n) break;res -= c * F[n - m];}F[n] = res;}return F;}// log f (mod x^n) for sparse FPS f// O(N * M) (M is for # of terms of f)// Requirement : f0 = 1vector<mint> log(vector<pair<int, mint>> f, int N){assert(int(f.size()) > 0);assert(f[0].first == 0);assert(f[0].second == (mint)1);vector<mint> f_prime(N);for(auto [n, c] : f){if(n == 0) continue;f_prime[n - 1] = c * n;}vector<mint> F_prime = quotient(f_prime, f, N);vector<mint> F(N);rep(n, N - 1) F[n + 1] = F_prime[n] / (n + 1);return F;}}int main(){int p1, p2, q1, q2, t;cin >> p1 >> p2 >> q1 >> q2 >> t;mint p = (mint)(p1)/ p2;mint q = (mint)(q1)/ q2;FormalPowerSeries<mint> f(t + 1);FormalPowerSeries<mint> g(t + 1);FormalPowerSeries<mint> h(2 * t + 5);rep(i, t + 1){g[i] = q.pow((long long)i * (i + 1) / 2);}f[0] = 1;rep(i, t){convolution_online(f, g, h, i);f[i + 1] = p * h[i] + g[i + 1];}// cout << f;// cout << g;cout << f[t] << "\n";return 0;}