結果

問題 No.900 aδδitivee
ユーザー dyktr_06
提出日時 2024-03-21 01:01:05
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 512 ms / 2,000 ms
コード長 13,149 bytes
コンパイル時間 3,122 ms
コンパイル使用メモリ 221,560 KB
最終ジャッジ日時 2025-02-20 10:22:30
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
class HeavyLightDecomposition{
protected:
int V;
vector<vector<int>> G;
vector<int> stsize, parent, pathtop, depth, in, reverse_in, out;
int root;
private:
// Subtree Size
void buildStsize(int curr, int prev){
stsize[curr] = 1, parent[curr] = prev;
for(int &v : G[curr]){
if(v == prev){
if(v == G[curr].back()) break;
else swap(v, G[curr].back());
}
buildStsize(v, curr);
stsize[curr] += stsize[v];
if(stsize[v] > stsize[G[curr][0]]){
swap(v, G[curr][0]);
}
}
}
void buildPath(int curr, int prev, int &t){
in[curr] = t++;
reverse_in[in[curr]] = curr;
for(int v : G[curr]){
if(v == prev) continue;
if(v == G[curr][0]){
pathtop[v] = pathtop[curr];
} else{
pathtop[v] = v;
}
depth[v] = depth[curr] + 1;
buildPath(v, curr, t);
}
out[curr] = t;
}
public:
HeavyLightDecomposition(int node_size) : V(node_size), G(V), stsize(V, 0), parent(V, -1),
pathtop(V, -1), depth(V, 0), in(V, -1), reverse_in(V, -1), out(V, -1){}
void add_edge(int u, int v){
G[u].push_back(v);
G[v].push_back(u);
}
void build(int _root = 0){
root = _root;
int t = 0;
buildStsize(root, -1);
pathtop[root] = root;
buildPath(root, -1, t);
}
inline int get(int a){
return in[a];
}
int la(int a, int k) {
while(true){
int u = pathtop[a];
if(in[a] - k >= in[u]) return reverse_in[in[a] - k];
k -= in[a] - in[u] + 1;
a = parent[u];
}
}
int lca(int a, int b){
int pa = pathtop[a], pb = pathtop[b];
while(pathtop[a] != pathtop[b]){
if(in[pa] > in[pb]){
a = parent[pa], pa = pathtop[a];
} else{
b = parent[pb], pb = pathtop[b];
}
}
if(in[a] > in[b]) swap(a, b);
return a;
}
int dist(int a, int b){ return depth[a] + depth[b] - 2 * depth[lca(a, b)]; }
int jump(int from, int to, int k) {
if(!k) return from;
int l = lca(from, to);
int d = dist(from, to);
if(d < k) return -1;
if(depth[from] - depth[l] >= k) return la(from, k);
k -= depth[from] - depth[l];
return la(to, depth[to] - depth[l] - k);
}
void subtree_query(int a, const function<void(int, int)> &func){
func(in[a], out[a]);
}
void path_query(int a, int b, const function<void(int, int)> &func, bool include_root = true, bool reverse_path = false){
vector<pair<int, int>> path;
int pa = pathtop[a], pb = pathtop[b];
while(pathtop[a] != pathtop[b]){
if(in[pa] > in[pb]){
path.emplace_back(in[pa], in[a] + 1);
a = parent[pa], pa = pathtop[a];
} else{
path.emplace_back(in[pb], in[b] + 1);
b = parent[pb], pb = pathtop[b];
}
}
if(in[a] > in[b]) swap(a, b);
if(include_root) path.emplace_back(in[a], in[b] + 1);
else path.emplace_back(in[a] + 1, in[b] + 1);
if(!reverse_path) reverse(path.begin(), path.end());
else for(auto &p : path) p = make_pair(V - p.second, V - p.first);
for(auto [u, v] : path){
func(u, v);
}
}
void path_noncommutative_query(int a, int b, const function<void(int, int)> &func, const function<void(int, int)> &func2){
int l = lca(a, b);
path_query(a, l, func2, false, true);
path_query(l, b, func, true, false);
}
};
template<typename T, T INF>
struct SegmentTreeBeats{
int n, n0;
vector<T> max_v, smax_v, max_c;
vector<T> min_v, smin_v, min_c;
vector<T> sum;
vector<T> len, ladd, lval;
void update_node_max(int k, T x) {
sum[k] += (x - max_v[k]) * max_c[k];
if(max_v[k] == min_v[k]){
max_v[k] = min_v[k] = x;
}else if(max_v[k] == smin_v[k]){
max_v[k] = smin_v[k] = x;
}else{
max_v[k] = x;
}
if(lval[k] != INF && x < lval[k]){
lval[k] = x;
}
}
void update_node_min(int k, T x) {
sum[k] += (x - min_v[k]) * min_c[k];
if(max_v[k] == min_v[k]){
max_v[k] = min_v[k] = x;
}else if(smax_v[k] == min_v[k]){
min_v[k] = smax_v[k] = x;
}else{
min_v[k] = x;
}
if(lval[k] != INF && lval[k] < x){
lval[k] = x;
}
}
void push(int k){
if(n0 - 1 <= k) return;
if(lval[k] != INF){
updateall(2 * k + 1, lval[k]);
updateall(2 * k + 2, lval[k]);
lval[k] = INF;
return;
}
if(ladd[k] != 0){
addall(2 * k + 1, ladd[k]);
addall(2 * k + 2, ladd[k]);
ladd[k] = 0;
}
if(max_v[k] < max_v[2 * k + 1]){
update_node_max(2 * k + 1, max_v[k]);
}
if(min_v[2 * k + 1] < min_v[k]){
update_node_min(2 * k + 1, min_v[k]);
}
if(max_v[k] < max_v[2 * k + 2]){
update_node_max(2 * k + 2, max_v[k]);
}
if(min_v[2 * k + 2] < min_v[k]){
update_node_min(2 * k + 2, min_v[k]);
}
}
void update(int k){
sum[k] = sum[2 * k + 1] + sum[2 * k + 2];
if(max_v[2 * k + 1] < max_v[2 * k + 2]){
max_v[k] = max_v[2 * k + 2];
max_c[k] = max_c[2 * k + 2];
smax_v[k] = max(max_v[2 * k + 1], smax_v[2 * k + 2]);
}else if(max_v[2 * k + 1] > max_v[2 * k + 2]){
max_v[k] = max_v[2 * k + 1];
max_c[k] = max_c[2 * k + 1];
smax_v[k] = max(smax_v[2 * k + 1], max_v[2 * k + 2]);
}else{
max_v[k] = max_v[2 * k + 1];
max_c[k] = max_c[2 * k + 1] + max_c[2 * k + 2];
smax_v[k] = max(smax_v[2 * k + 1], smax_v[2 * k + 2]);
}
if(min_v[2 * k + 1] < min_v[2 * k + 2]){
min_v[k] = min_v[2 * k + 1];
min_c[k] = min_c[2 * k + 1];
smin_v[k] = min(smin_v[2 * k + 1], min_v[2 * k + 2]);
}else if(min_v[2 * k + 1] > min_v[2 * k + 2]){
min_v[k] = min_v[2 * k + 2];
min_c[k] = min_c[2 * k + 2];
smin_v[k] = min(min_v[2 * k + 1], smin_v[2 * k + 2]);
}else{
min_v[k] = min_v[2 * k + 1];
min_c[k] = min_c[2 * k + 1] + min_c[2 * k + 2];
smin_v[k] = min(smin_v[2 * k + 1], smin_v[2 * k + 2]);
}
}
void _query_chmin(T x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a || max_v[k] <= x){
return;
}
if(a <= l && r <= b && smax_v[k] < x){
update_node_max(k, x);
return;
}
push(k);
_query_chmin(x, a, b, 2 * k + 1, l, (l + r) / 2);
_query_chmin(x, a, b, 2 * k + 2, (l + r) / 2, r);
update(k);
}
void _query_chmax(T x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a || x <= min_v[k]){
return;
}
if(a <= l && r <= b && x < smin_v[k]){
update_node_min(k, x);
return;
}
push(k);
_query_chmax(x, a, b, 2 * k + 1, l, (l + r) / 2);
_query_chmax(x, a, b, 2 * k + 2, (l + r) / 2, r);
update(k);
}
void addall(int k, T x) {
max_v[k] += x;
if(smax_v[k] != -INF) smax_v[k] += x;
min_v[k] += x;
if(smin_v[k] != INF) smin_v[k] += x;
sum[k] += len[k] * x;
if(lval[k] != INF){
lval[k] += x;
}else{
ladd[k] += x;
}
}
void updateall(int k, T x) {
max_v[k] = x; smax_v[k] = -INF;
min_v[k] = x; smin_v[k] = INF;
max_c[k] = min_c[k] = len[k];
sum[k] = x * len[k];
lval[k] = x; ladd[k] = 0;
}
void _query_add(T x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a){
return;
}
if(a <= l && r <= b){
addall(k, x);
return;
}
push(k);
_query_add(x, a, b, 2 * k + 1, l, (l + r) / 2);
_query_add(x, a, b, 2 * k + 2, (l + r) / 2, r);
update(k);
}
void _query_update(T x, int a, int b, int k, int l, int r) {
if(b <= l || r <= a){
return;
}
if(a <= l && r <= b){
updateall(k, x);
return;
}
push(k);
_query_update(x, a, b, 2 * k + 1, l, (l + r) / 2);
_query_update(x, a, b, 2 * k + 2, (l + r) / 2, r);
update(k);
}
T _query_max(int a, int b, int k, int l, int r) {
if(b <= l || r <= a){
return -INF;
}
if(a <= l && r <= b){
return max_v[k];
}
push(k);
T lv = _query_max(a, b, 2 * k + 1, l, (l + r) / 2);
T rv = _query_max(a, b, 2 * k + 2, (l + r) / 2, r);
return max(lv, rv);
}
T _query_min(int a, int b, int k, int l, int r) {
if(b <= l || r <= a){
return INF;
}
if(a <= l && r <= b){
return min_v[k];
}
push(k);
T lv = _query_min(a, b, 2 * k + 1, l, (l + r) / 2);
T rv = _query_min(a, b, 2 * k + 2, (l + r) / 2, r);
return min(lv, rv);
}
T _query_sum(int a, int b, int k, int l, int r) {
if(b <= l || r <= a){
return 0;
}
if(a <= l && r <= b){
return sum[k];
}
push(k);
T lv = _query_sum(a, b, 2 * k + 1, l, (l + r) / 2);
T rv = _query_sum(a, b, 2 * k + 2, (l + r) / 2, r);
return lv + rv;
}
public:
SegmentTreeBeats(int n) : n(n){
vector<T> a;
init(n, a);
}
SegmentTreeBeats(int n, vector<T> &a) : n(n){
init(n, a);
}
void init(int n, vector<T> &a){
max_v.assign(4 * n, 0), smax_v.assign(4 * n, 0), max_c.assign(4 * n, 0);
min_v.assign(4 * n, 0), smin_v.assign(4 * n, 0), min_c.assign(4 * n, 0);
sum.assign(4 * n, 0);
len.assign(4 * n, 0), ladd.assign(4 * n, 0); lval.assign(4 * n, 0);
n0 = 1;
while(n0 < n) n0 <<= 1;
for(int i = 0; i < 2 * n0; ++i) ladd[i] = 0, lval[i] = INF;
len[0] = n0;
for(int i = 0; i < n0 - 1; ++i) len[2 * i + 1] = len[2 * i + 2] = (len[i] >> 1);
for(int i = 0; i < n; ++i){
max_v[n0 - 1 + i] = min_v[n0 - 1 + i] = sum[n0 - 1 + i] = (!a.empty() ? a[i] : 0);
smax_v[n0 - 1 + i] = -INF;
smin_v[n0 - 1 + i] = INF;
max_c[n0 - 1 + i] = min_c[n0 - 1 + i] = 1;
}
for(int i = n; i < n0; ++i){
max_v[n0 - 1 + i] = smax_v[n0 - 1 + i] = -INF;
min_v[n0 - 1 + i] = smin_v[n0 - 1 + i] = INF;
max_c[n0 - 1 + i] = min_c[n0 - 1 + i] = 0;
}
for(int i = n0 - 2; i >= 0; --i){
update(i);
}
}
// range minimize query
void query_chmin(int a, int b, T x){
_query_chmin(x, a, b, 0, 0, n0);
}
// range maximize query
void query_chmax(int a, int b, T x){
_query_chmax(x, a, b, 0, 0, n0);
}
// range add query
void query_add(int a, int b, T x){
_query_add(x, a, b, 0, 0, n0);
}
// range update query
void query_update(int a, int b, T x){
_query_update(x, a, b, 0, 0, n0);
}
// range minimum query
T query_max(int a, int b){
return _query_max(a, b, 0, 0, n0);
}
// range maximum query
T query_min(int a, int b){
return _query_min(a, b, 0, 0, n0);
}
// range sum query
T query_sum(int a, int b){
return _query_sum(a, b, 0, 0, n0);
}
T get(int x){
return _query_sum(x, x + 1, 0, 0, n0);
}
};
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
HeavyLightDecomposition G(n);
vector<int> u(n - 1), v(n - 1), w(n - 1);
for(int i = 0; i < n - 1; i++){
cin >> u[i] >> v[i] >> w[i];
G.add_edge(u[i], v[i]);
}
G.build();
SegmentTreeBeats<long long, 1LL << 60> seg(n);
for(int i = 0; i < n - 1; i++){
int idx = max(G.get(u[i]), G.get(v[i]));
seg.query_update(idx, idx + 1, w[i]);
}
long long ans = 0;
long long x;
auto query1 = [&](int l, int r){
seg.query_add(l + 1, r, x);
};
auto query2 = [&](int l, int r){
ans += seg.query_sum(l, r);
};
int q; cin >> q;
while(q--){
int t; cin >> t;
if(t == 1){
int a; cin >> a >> x;
G.subtree_query(a, query1);
}else{
int b; cin >> b;
ans = 0;
G.path_query(0, b, query2, false, false);
cout << ans << "\n";
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0