結果
| 問題 |
No.2688 Cell Proliferation (Hard)
|
| コンテスト | |
| ユーザー |
momohara
|
| 提出日時 | 2024-03-22 01:54:02 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,903 ms / 4,000 ms |
| コード長 | 17,674 bytes |
| コンパイル時間 | 6,513 ms |
| コンパイル使用メモリ | 337,756 KB |
| 実行使用メモリ | 160,004 KB |
| 最終ジャッジ日時 | 2024-09-30 10:27:47 |
| 合計ジャッジ時間 | 37,775 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
#include <atcoder/all>
#include <bits/stdc++.h>
using namespace std;
using namespace atcoder;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<ll, ll>;
using tp = tuple<ll, ll, ll>;
template <class T>
using vec = vector<T>;
template <class T>
using vvec = vector<vec<T>>;
#define all(hoge) (hoge).begin(), (hoge).end()
#define en '\n'
#define rep(i, m, n) for(ll i = (ll)(m); i < (ll)(n); ++i)
#define rep2(i, m, n) for(ll i = (ll)(n)-1; i >= (ll)(m); --i)
#define REP(i, n) rep(i, 0, n)
#define REP2(i, n) rep2(i, 0, n)
constexpr long long INF = 1LL << 60;
constexpr int INF_INT = 1 << 25;
// constexpr long long MOD = (ll)1e9 + 7;
constexpr long long MOD = 998244353LL;
static const ld pi = 3.141592653589793L;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
template <class T>
inline bool chmin(T &a, T b) {
if(a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if(a < b) {
a = b;
return true;
}
return false;
}
struct Edge {
int to, rev;
ll cap;
Edge(int _to, int _rev, ll _cap) : to(_to), rev(_rev), cap(_cap) {}
};
typedef vector<Edge> Edges;
typedef vector<Edges> Graph;
void add_edge(Graph &G, int from, int to, ll cap, bool revFlag, ll revCap) {
G[from].push_back(Edge(to, (int)G[to].size(), cap));
if(revFlag)
G[to].push_back(Edge(from, (int)G[from].size() - 1, revCap));
}
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
using mint = ModInt<MOD>;
namespace FastFourierTransform {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0},
{1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase) {
if(nbase <= base)
return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase) {
real angle = PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C> &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector<int64_t> multiply(const vector<int> &a, const vector<int> &b) {
int need = (int)a.size() + (int)b.size() - 1;
int nbase = 1;
while((1 << nbase) < need)
nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for(int i = 0; i < sz; i++) {
int x = (i < (int)a.size() ? a[i] : 0);
int y = (i < (int)b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector<int64_t> ret(need);
for(int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
}; // namespace FastFourierTransform
template <typename T>
struct ArbitraryModConvolution {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
static vector<T> multiply(const vector<T> &a, const vector<T> &b, int need = -1) {
if(need == -1)
need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need)
nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for(int i = 0; i < a.size(); i++) {
fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
}
fft(fa, sz);
vector<C> fb(sz);
if(a == b) {
fb = fa;
} else {
for(int i = 0; i < b.size(); i++) {
fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector<T> ret(need);
for(int i = 0; i < need; i++) {
int64_t aa = llround(fa[i].x);
int64_t bb = llround(fb[i].x);
int64_t cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
template <typename T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using P = FormalPowerSeries;
using Conv = ArbitraryModConvolution<T>;
P pre(int deg) const {
return P(begin(*this), begin(*this) + min((int)this->size(), deg));
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1)
ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
void shrink() {
while(this->size() && this->back() == T(0))
this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size())
this->resize(r.size());
for(int i = 0; i < r.size(); i++)
(*this)[i] += r[i];
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size())
this->resize(r.size());
for(int i = 0; i < r.size(); i++)
(*this)[i] -= r[i];
return *this;
}
// https://judge.yosupo.jp/problem/convolution_mod
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
auto ret = Conv::multiply(*this, r);
return *this = {begin(ret), end(ret)};
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
// https://judge.yosupo.jp/problem/division_of_polynomials
pair<P, P> div_mod(const P &r) {
P q = *this / r;
return make_pair(q, *this - q * r);
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < this->size(); i++)
ret[i] = -(*this)[i];
return ret;
}
P &operator+=(const T &r) {
if(this->empty())
this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const T &r) {
if(this->empty())
this->resize(1);
(*this)[0] -= r;
return *this;
}
P &operator*=(const T &v) {
for(int i = 0; i < this->size(); i++)
(*this)[i] *= v;
return *this;
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < ret.size(); i++)
ret[i] = (*this)[i] * r[i];
return ret;
}
P operator>>(int sz) const {
if(this->size() <= sz)
return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
T operator()(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
P diff() const {
const int n = (int)this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++)
ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int)this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++)
ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// https://judge.yosupo.jp/problem/inv_of_formal_power_series
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int)this->size();
if(deg == -1)
deg = n;
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
// https://judge.yosupo.jp/problem/log_of_formal_power_series
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == T(1));
const int n = (int)this->size();
if(deg == -1)
deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
// https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
P sqrt(
int deg = -1, const function<T(T)> &get_sqrt = [](T) { return T(1); }) const {
const int n = (int)this->size();
if(deg == -1)
deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1)
return {};
if(deg - i / 2 <= 0)
break;
auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
if(ret.empty())
return {};
ret = ret << (i / 2);
if(ret.size() < deg)
ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
auto sqr = T(get_sqrt((*this)[0]));
if(sqr * sqr != (*this)[0])
return {};
P ret{sqr};
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
P sqrt(const function<T(T)> &get_sqrt, int deg = -1) const {
return sqrt(deg, get_sqrt);
}
// https://judge.yosupo.jp/problem/exp_of_formal_power_series
// F(0) must be 0
P exp(int deg = -1) const {
if(deg == -1)
deg = this->size();
assert((*this)[0] == T(0));
const int n = (int)this->size();
if(deg == -1)
deg = n;
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
// https://judge.yosupo.jp/problem/pow_of_formal_power_series
P pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if(deg == -1)
deg = n;
if(k == 0) {
P ret(deg, T(0));
ret[0] = T(1);
return ret;
}
for(int i = 0; i < n; i++) {
if(i * k > deg)
return P(deg, T(0));
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
ret = (ret << (i * k)).pre(deg);
if(ret.size() < deg)
ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
// https://yukicoder.me/problems/no/215
P mod_pow(int64_t k, P g) const {
P modinv = g.rev().inv();
auto get_div = [&](P base) {
if(base.size() < g.size()) {
base.clear();
return base;
}
int n = base.size() - g.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(k > 0) {
if(k & 1) {
ret *= x;
ret -= get_div(ret) * g;
ret.shrink();
}
x *= x;
x -= get_div(x) * g;
x.shrink();
k >>= 1;
}
return ret;
}
// https://judge.yosupo.jp/problem/polynomial_taylor_shift
P taylor_shift(T c) const {
int n = (int)this->size();
vector<T> fact(n), rfact(n);
fact[0] = rfact[0] = T(1);
for(int i = 1; i < n; i++)
fact[i] = fact[i - 1] * T(i);
rfact[n - 1] = T(1) / fact[n - 1];
for(int i = n - 1; i > 1; i--)
rfact[i - 1] = rfact[i] * T(i);
P p(*this);
for(int i = 0; i < n; i++)
p[i] *= fact[i];
p = p.rev();
P bs(n, T(1));
for(int i = 1; i < n; i++)
bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
p = (p * bs).pre(n);
p = p.rev();
for(int i = 0; i < n; i++)
p[i] *= rfact[i];
return p;
}
};
void solve() {
ll p1, p2, q1, q2, t;
cin >> p1 >> p2 >> q1 >> q2 >> t;
mint P = mint(p1) / p2;
mint Q = mint(q1) / q2;
using FPS = FormalPowerSeries<mint>;
FPS g(t + 2), h(t + 2);
mint QQ = 1;
g[0] = 1;
h[0] = 1;
REP(i, t) {
g[i + 1] = P * QQ * (-1);
QQ *= Q.pow(i + 1);
h[i + 1] = QQ;
}
auto ginv = g.inv();
auto f = ginv * h;
cout << f[t] << en;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
// cout << fixed << setprecision(10);
// ll t;
// cin >> t;
// REP(i, t - 1) {
// solve();
// }
solve();
return 0;
}
momohara