結果
問題 | No.2697 Range LIS Query |
ユーザー | PNJ |
提出日時 | 2024-03-22 21:51:35 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,306 bytes |
コンパイル時間 | 270 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 112,224 KB |
最終ジャッジ日時 | 2024-09-30 11:20:12 |
合計ジャッジ時間 | 15,145 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 49 ms
66,688 KB |
testcase_01 | AC | 43 ms
53,632 KB |
testcase_02 | AC | 90 ms
76,416 KB |
testcase_03 | AC | 985 ms
112,224 KB |
testcase_04 | AC | 820 ms
107,872 KB |
testcase_05 | AC | 861 ms
109,988 KB |
testcase_06 | TLE | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
ソースコード
import sys input = lambda: sys.stdin.readline().strip() class LazySegTree(): # G:モノイド F:写像の集合 # operate(x,y): x*y (G×G -> G) # mapping(f,x): f(x) (F×G -> G) # composition(f,g): f ○ g (F×F -> F) # element: Gの単位元 # identity: Fの単位元(恒等写像) def __init__(self,V,operate,element,mapping,composition,identity): self.n = len(V) self.log = (self.n - 1).bit_length() self.size = 1 << self.log self.d = [element for i in range(2*self.size)] self.lz = [identity for i in range(self.size)] self.e = element self.op = operate self.mapping = mapping self.comp = composition self.id = identity for i in range(self.n): self.d[self.size + i] = V[i] for i in range(self.size - 1,0,-1): self.update(i) def all_apply(self,k,f): self.d[k] = self.mapping(f,self.d[k]) if (k < self.size): self.lz[k] = self.comp(f,self.lz[k]) def update(self,k): self.d[k] = self.op(self.d[2*k],self.d[2*k+1]) def push(self,k): self.all_apply(2*k,self.lz[k]) self.all_apply(2*k+1,self.lz[k]) self.lz[k] = self.id def set(self,p,x): # V[p] -> x assert 0 <= p < self.n p += self.size for i in range(self.log,0,-1): self.push(p >> i) self.d[p] = x for i in range(1,self.log+1): self.update(p >> i) def get(self,p): # V[p]を取得 assert 0 <= p < self.n p += self.size for i in range(self.log,0,-1): self.push(p>>i) return self.d[p] def prod(self,l,r): # [l,r)での値の取得 assert 0 <= l <= r <= self.n if l==r: return self.e l += self.size r += self.size for i in range(self.log,0,-1): if (((l >> i) << i)!=l): self.push(l >> i) if (((r >> i) << i)!=r): self.push(r >> i) sml = smr = self.e while l < r: if l & 1: sml = self.op(sml,self.d[l]) l += 1 if r & 1: r -= 1 smr = self.op(self.d[r],smr) l >>= 1 r >>= 1 return self.op(sml,smr) def all_prod(self): return self.d[1] def apply_point(self,p,f): # p -> f(p) assert 0<=p and p<self.n p+=self.size for i in range(self.log,0,-1): self.push(p>>i) self.d[p]=self.mapping(f,self.d[p]) for i in range(1,self.log+1): self.update(p>>i) def apply(self,l,r,f): # [l,r)のxをf(x) assert 0 <= l <= r <= self.n if l == r: return l += self.size r += self.size for i in range(self.log,0,-1): if ((l >> i) << i)!= l: self.push(l >> i) if ((r >> i) << i) != r: self.push((r-1) >> i) l_,r_ = l,r while l < r: if (l&1): self.all_apply(l,f) l+=1 if (r&1): r-=1 self.all_apply(r,f) l >>= 1 r >>= 1 l,r = l_,r_ for i in range(1,self.log+1): if ((l >> i) << i) != l: self.update(l>>i) if ((r >> i) << i) != r: self.update((r-1) >> i) def max_right(self,l,g): # x = prod(l,r), g(x) = true となる、最大のrを求める。 assert 0 <= l <= self.n assert g(self.e) if l == self.n: return self.n l += self.size for i in range(self.log,0,-1): self.push(l >> i) sm=self.e while(1): while(l%2 == 0): l >>= 1 if not(g(self.op(sm,self.d[l]))): while(l < self.size): self.push(l) l = 2*l if (g(self.op(sm,self.d[l]))): sm = self.op(sm,self.d[l]) l += 1 return l - self.size sm = self.op(sm,self.d[l]) l += 1 if (l & -l) == l: break return self.n def min_left(self,r,g): # x = prod(l,r), g(x) = true となる、最小のlを求める。 assert (0 <= r <=self.n) assert g(self.e) if r == 0: return 0 r += self.size for i in range(self.log,0,-1): self.push((r-1) >> i) sm=self.e while(1): r -= 1 while(r > 1 and (r%2)): r >>= 1 if not(g(self.op(self.d[r],sm))): while(r < self.size): self.push(r) r = 2*r + 1 if g(self.op(self.d[r],sm)): sm = self.op(self.d[r],sm) r -= 1 return r + 1 - self.size sm = self.op(self.d[r],sm) if (r & -r) == r: break return 0 def op(x,y): c = x[1] + y[1] z = [[0 for j in range(4)] for i in range(4)] for i in range(4): for j in range(i,4): for k in range(j,4): for l in range(k,4): z[i][l] = max(z[i][l],x[0][i][j] + y[0][k][l]) return (z,c) def mapping(f,x): if f == -1: return x c = x[1] z = [[0 for i in range(4)] for j in range(4)] z[f][f] = c return (z,c) def composing(f,g): if f == -1: return g return f N = int(input()) A = list(map(int,input().split())) X = [([[0 for j in range(4)] for i in range(4)],1) for j in range(N)] seg = LazySegTree(X,op,([[0 for j in range(4)] for i in range(4)],0),mapping,composing,-1) for i in range(N): seg.apply_point(i,A[i]-1) Q = int(input()) for _ in range(Q): q = list(map(int,input().split())) l,r = q[1],q[2] if q[0] == 1: z = seg.prod(l-1,r)[0] ans = 0 for i in range(4): for j in range(4): ans = max(z[i][j],ans) print(ans) else: x = q[3] - 1 seg.apply(l-1,r,x)