結果

問題 No.2695 Warp Zone
ユーザー 👑 binapbinap
提出日時 2024-03-22 21:58:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,649 ms / 2,000 ms
コード長 3,512 bytes
コンパイル時間 4,076 ms
コンパイル使用メモリ 281,412 KB
実行使用メモリ 204,712 KB
最終ジャッジ日時 2024-09-30 11:30:50
合計ジャッジ時間 19,763 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 1,541 ms
203,432 KB
testcase_04 AC 1,622 ms
200,852 KB
testcase_05 AC 1,599 ms
200,008 KB
testcase_06 AC 1,630 ms
202,456 KB
testcase_07 AC 1,649 ms
204,712 KB
testcase_08 AC 5 ms
5,248 KB
testcase_09 AC 468 ms
89,752 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 113 ms
27,308 KB
testcase_12 AC 703 ms
114,568 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 804 ms
158,956 KB
testcase_15 AC 370 ms
82,024 KB
testcase_16 AC 95 ms
23,412 KB
testcase_17 AC 221 ms
44,596 KB
testcase_18 AC 1,224 ms
176,020 KB
testcase_19 AC 3 ms
5,248 KB
testcase_20 AC 1,005 ms
166,140 KB
testcase_21 AC 873 ms
157,612 KB
testcase_22 AC 297 ms
58,184 KB
testcase_23 AC 614 ms
112,012 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 1 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;

ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;}

template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}

template<typename T>
struct Edge_Dijkstra{
	int from, to;
	T cost;
	Edge_Dijkstra(int from, int to, T cost) : from(from), to(to), cost(cost) {};
};

const int INF = 1001001001;
template<typename T>
struct Dijkstra{
	int n, m;
	vector<bool> initialized;
	vector<Edge_Dijkstra<T>> E;
	vector<vector<int>> G;
	map<int, vector<T>> dist;
	map<int, vector<int>> idx;
	Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}
	void add_edge(int from, int to, T cost){
		Edge_Dijkstra e(from, to, cost);
		E.push_back(e);
		G[from].emplace_back(m);
		m++;
	}
	void calc(int s){
		initialized[s] = true;
		dist[s] = vector<T>(n, INF);
		idx[s] = vector<int>(n, -1);
		priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<tuple<T, int, int>>> pq;
		pq.emplace(0, s, -1);
		while(pq.size()){
			auto [cost, from, index] = pq.top(); pq.pop();
			if(dist[s][from] <= cost) continue;
			dist[s][from] = cost;
			idx[s][from] = index;
			for(int index : G[from]){
				int to = E[index].to;
				T cost_plus = E[index].cost;
				if(dist[s][to] <= cost + cost_plus) continue;
				pq.emplace(cost + cost_plus, to, index);
			}
		}
	}
	int farthest(int s){
		if(!initialized[s]) calc(s);
		int idx = 0;
		rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i;
		return idx;
	}
	T get_dist(int s, int t){
		if(!initialized[s]) calc(s);
		return dist[s][t];
	}
	vi restore(int s, int t){
		if(!initialized[s]) calc(s);
		if(dist[s][t] == INF) return vi(0);
		vi res;
		while(idx[s][t] != -1){
			auto e = E[idx[s][t]];
			res.push_back(idx[s][t]);
			t = e.from;
		}
	reverse(res.begin(), res.end());
	return res;
	}
};

int main(){
	int h, w, n;
	cin >> h >> w >> n;
	int m = 2 * n + 2;
	vector<long long> y(2 * n + 2), x(2 * n + 2);
	int sv = 2 * n;
	int tv = 2 * n + 1;
	rep(i, n){
		cin >> y[2 * i] >> x[2 * i];
		cin >> y[2 * i + 1] >> x[2 * i + 1];
	}
	y[sv] = 1; x[sv] = 1;
	y[tv] = h; x[tv] = w;
	Dijkstra<int> graph(m);
	rep(i, m){
		rep(j, m){
			graph.add_edge(i, j, abs(x[i] - x[j]) + abs(y[i] - y[j]));
			graph.add_edge(j, i, abs(x[i] - x[j]) + abs(y[i] - y[j]));
		}
	}
	rep(i, n){
		graph.add_edge(2 * i, 2 * i + 1, 1LL);
	}
	cout << graph.get_dist(sv, tv) << "\n";
	return 0;
}
0