結果

問題 No.2695 Warp Zone
ユーザー kaikeykaikey
提出日時 2024-03-22 22:03:49
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 484 ms / 2,000 ms
コード長 5,151 bytes
コンパイル時間 2,830 ms
コンパイル使用メモリ 234,548 KB
実行使用メモリ 68,096 KB
最終ジャッジ日時 2024-09-30 11:34:39
合計ジャッジ時間 8,535 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 483 ms
68,096 KB
testcase_04 AC 450 ms
66,816 KB
testcase_05 AC 445 ms
66,816 KB
testcase_06 AC 478 ms
67,584 KB
testcase_07 AC 484 ms
68,096 KB
testcase_08 AC 3 ms
5,248 KB
testcase_09 AC 150 ms
28,032 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 41 ms
11,008 KB
testcase_12 AC 222 ms
38,656 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 290 ms
47,872 KB
testcase_15 AC 131 ms
25,344 KB
testcase_16 AC 34 ms
9,984 KB
testcase_17 AC 71 ms
16,384 KB
testcase_18 AC 371 ms
57,984 KB
testcase_19 AC 3 ms
5,248 KB
testcase_20 AC 330 ms
52,352 KB
testcase_21 AC 278 ms
46,976 KB
testcase_22 AC 107 ms
19,584 KB
testcase_23 AC 213 ms
38,016 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
    for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
    return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
    for (T& in : v) is >> in;
    return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
    F f;
    rec(F&& f_) : f(std::forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&... args) const {
        return f(*this, std::forward<Args>(args)...);
    }
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
    lint from, to;
    lint cost;
    Edge() {

    }
    Edge(lint u, lint v, lint c) {
        cost = c;
        from = u;
        to = v;
    }
    bool operator<(const Edge& e) const {
        return cost < e.cost;
    }
};
struct WeightedEdge {
    lint to;
    lint cost;
    WeightedEdge(lint v, lint c) {
        to = v;
        cost = c;
    }
    bool operator<(const WeightedEdge& e) const {
        return cost < e.cost;
    }
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<Edge, lint> pEd;
typedef pair<plint, V<plint>> vVl;
typedef pair<string, string> pstr;
typedef pair<ld, lint> pint;
typedef pair<lint, set<pint>> pset;

Vl Dijkstra(WeightedGraph& g, int s) {
    Vl dist(SZ(g), INF);
    deque<bool> visited(SZ(g), false);
    priority_queue<plint> que;
    que.push({ 0, s });
    dist[s] = 0;
    while (!que.empty()) {
        plint curr = que.top(); que.pop();
        if (visited[curr.second]) continue;
        visited[curr.second] = true;
        if (dist[curr.second] < curr.first) continue;
        for (auto nxt : g[curr.second]) {
            if (visited[nxt.to]) continue;
            if (dist[nxt.to] > dist[curr.second] + nxt.cost) {
                dist[nxt.to] = dist[curr.second] + nxt.cost;
                que.emplace(-dist[nxt.to], nxt.to);
            }
        }
    }
    return dist;
}

void solve() {
    lint H, W, N;
    cin >> H >> W >> N;
    set<plint> st;
    st.insert({ 1, 1 });
    st.insert({ H, W });
    V<qlint> arr;
    REP(i, N) {
        lint a, b, c, d;
        cin >> a >> b >> c >> d;
        arr.push_back({ {a, b}, {c, d} });
        st.insert({ a, b });
        st.insert({ c, d });
    }

    WeightedGraph g(SZ(st));
    map<plint, lint> fx;
    for (auto v : st) fx[v] = SZ(fx);

    for (auto v : st) {
        for (auto u : st) {
            g[fx[v]].push_back({ fx[u], m_dist(v, u) });
        }
    }
    for (auto q : arr) {
        g[fx[q.first]].push_back({ fx[q.second], 1 });
    }

    cout << Dijkstra(g, fx[{0, 0}])[fx[{H, W}]] << endk;
}

int main() {
    lint T = 1;
    //cin >> T;
    while (T--) solve();
}
0