結果
問題 | No.2697 Range LIS Query |
ユーザー | leaf_1415 |
提出日時 | 2024-03-22 22:28:46 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 1,728 ms / 10,000 ms |
コード長 | 13,249 bytes |
コンパイル時間 | 2,200 ms |
コンパイル使用メモリ | 128,220 KB |
実行使用メモリ | 158,172 KB |
最終ジャッジ日時 | 2024-09-30 11:58:54 |
合計ジャッジ時間 | 20,543 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 225 ms
157,392 KB |
testcase_01 | AC | 223 ms
157,320 KB |
testcase_02 | AC | 226 ms
157,376 KB |
testcase_03 | AC | 251 ms
157,280 KB |
testcase_04 | AC | 249 ms
157,224 KB |
testcase_05 | AC | 248 ms
157,288 KB |
testcase_06 | AC | 1,305 ms
158,104 KB |
testcase_07 | AC | 1,276 ms
157,988 KB |
testcase_08 | AC | 1,293 ms
158,124 KB |
testcase_09 | AC | 1,035 ms
158,036 KB |
testcase_10 | AC | 1,038 ms
158,112 KB |
testcase_11 | AC | 1,048 ms
158,008 KB |
testcase_12 | AC | 1,026 ms
157,924 KB |
testcase_13 | AC | 1,042 ms
158,172 KB |
testcase_14 | AC | 1,374 ms
158,080 KB |
testcase_15 | AC | 1,711 ms
158,040 KB |
testcase_16 | AC | 1,689 ms
158,036 KB |
testcase_17 | AC | 1,728 ms
158,032 KB |
ソースコード
#include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #include <array> #include <unordered_set> #include <unordered_map> #define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++) #define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--) #define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++) #define pers(x, s) for(ll x = (ll)(s).size()-1; (x) >= 0; (x)--) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define outl(...) dump_func(__VA_ARGS__) #define outf(x) cout << fixed << setprecision(16) << (x) << endl #define pb push_back #define fi first #define se second #define inf 2e18 #define eps 1e-9 const double PI = 3.1415926535897932384626433; using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<ll, ll> P; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; const int dx8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy8[] = {0, -1, -1, -1, 0, 1, 1, 1}; const int mod = 998244353; //const int mod = 1000000007; struct mint{ int x; mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){x += ope.x; if(x >= mod) x -= mod; return *this;} mint& operator-=(const mint &ope){x += mod - ope.x; if(x >= mod) x -= mod; return *this;} mint& operator*=(const mint &ope){ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this;} mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){if(n & 1) *this *= mul; mul *= mul; n >>= 1;} return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} bool operator <(const mint &ope)const{return x < ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope = mint(t); return is;} ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} ll modpow(ll a, ll n, ll mod){ if(n == 0) return 1; if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod; else return modpow((a*a)%mod, n/2, mod) % mod; } vector<mint> fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];} mint perm(int n, int k){ return comb(n, k) * fact[k]; } mint divide(int n, int k){ if(n == 0 && k == 0) return 1; return comb(n+k-1, k-1); } template<typename T> T comb2(ll n, ll k){ if(n < 0 || k < 0 || n < k) return T(0); T ret = 1; rep(i, 1, k) ret *= n-k+i, ret /= i; return ret;} vector<ll> prime, pvec, qrime; void make_prime(int n){ prime.resize(n+1); rep(i, 2, n){ if(prime[i] == 0) pvec.push_back(i), prime[i] = i; for(auto p : pvec){ if(i*p > n || p > prime[i]) break; prime[i*p] = p;} } } void make_qrime(int n){ qrime.resize(n+1); rep(i, 2, n){int ni = i / prime[i]; if(prime[i] == prime[ni]) qrime[i] = qrime[ni] * prime[i]; else qrime[i] = prime[i];} } void factorize(ll n, map<ll, ll> &mp){ mp.clear(); for(auto p : pvec) while(n % p == 0) mp[p]++, n /= p; if(n > 1) mp[n]++; } bool exceed(ll x, ll y, ll m){return y > 0 && x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "Yes" << endl; } void no(){ cout << "No" << endl; } ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); } ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); } ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;} ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} template<typename T> T arith(T x){return x*(x+1)/2;} template<typename T> T arith2(T x){return x*(x+1)*(x*2+1)/6;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x, ll b = 10){if(x == 0) return "0"; string ret; for(;x;x/=b) ret += x % b + '0'; reverse(all(ret)); return ret;} ll stoll(string &s, ll b = 10){ll ret = 0; for(auto c : s) ret *= b, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());} int popcount(ull x){ x -= ((x>>1)&0x5555555555555555ULL), x = (x & 0x3333333333333333ULL) + ((x>>2) & 0x3333333333333333ULL); return (((x + (x>>4)) & 0x0F0F0F0F0F0F0F0FULL) * 0x0101010101010101ULL) >> 56; } template<typename T> vector<pair<T, ll>> rle(vector<T> vec){ vector<pair<T, ll>> ret; for(auto x : vec){if(sz(ret) == 0 || ret.back().first != x) ret.push_back(P(x, 1)); else ret.back().second++;} return ret; } vector<pair<char, ll>> rle(string s){ vector<char> vec; for(auto c : s) vec.push_back(c); return rle(vec);} template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;} template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;} template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);} template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);} template<class T> T dot(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.first + s.second*t.second;} template<class T> T cross(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.second - s.second*t.first;} template<class T> T mdist(pair<T, T> s, pair<T, T> t){return abs(s.first-t.first) + abs(s.second-t.second);} template<class T> T cdist(pair<T, T> s, pair<T, T> t){return max(abs(s.first-t.first), abs(s.second-t.second));} template<class T> T edist2(pair<T, T> s, pair<T, T> t){return (s.first-t.first)*(s.first-t.first) + (s.second-t.second)*(s.second-t.second);} template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;} template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;} template<typename T> ostream& operator << (ostream& os, list<T>& ls){for(auto x : ls) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, const list<T>& ls){for(auto x : ls) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i, deq) os << deq[i] << " "; return os;} template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;} template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;} template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;} template<typename T, size_t N> ostream& operator << (ostream& os, array<T, N>& arr){reps(i, arr) os << arr[i] << " "; return os;} template<typename T, size_t N> ostream& operator << (ostream& os, const array<T, N>& arr){reps(i, arr) os << arr[i] << " "; return os;} void dump_func(){cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail){cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...);} template<typename T> void bssert(bool b, T t){ if(!b) cout << t << endl, exit(0); } struct Matrix{ typedef ll T; int h, w; vector<T> mat; Matrix(){h = w = 0;} Matrix(int h, int w){ this->h = h, this->w = w; mat.resize(h*w); } T addope(T a, T b){ return max(a, b); } //addtive operator static T addIdent(){ return -inf;} //additive identity T mulope(T a, T b){ return a+b; } //multiplicative operator static T mulIdent(){ return 0; } //multiplicative identity T& at(int i, int j){ return mat[w*(i-1)+(j-1)];} static Matrix Ident(int size){ Matrix ret(size, size); rep(i, 1, size) rep(j, 1, size){ if(i == j) ret.at(i, j) = mulIdent(); else ret.at(i, j) = addIdent(); } return ret; } Matrix operator+(Matrix& ope){ Matrix ret(h, w); rep(i, 1, h) rep(j, 1, w) ret.at(i, j) = at(i, j) + ope.at(i, j); return ret; } Matrix operator*(Matrix& ope){ Matrix ret(h, ope.w); rep(i, 1, h) rep(j, 1, ope.w){ ret.at(i, j) = addIdent(); rep(k, 1, w) ret.at(i, j) = addope(ret.at(i, j), mulope(at(i, k), ope.at(k, j))); } return ret; } Matrix pow(ll n){ if(n == 0) return Ident(h); if(n % 2) return pow(n-1) * (*this); else{ Matrix tmp = pow(n/2); return tmp * tmp; } } }; ostream& operator << (ostream& os, Matrix& mat) { rep(i, 1, mat.h){rep(j, 1, mat.w) os << mat.mat[mat.w*(i-1)+(j-1)] << " "; cout << endl;} return os; } ostream& operator << (ostream& os, const Matrix& mat) { rep(i, 1, mat.h){rep(j, 1, mat.w) os << mat.mat[mat.w*(i-1)+(j-1)] << " "; cout << endl;} return os; } Matrix mat[5][200005]; struct LazySegTree{ typedef Matrix S; typedef ll T; int size; vector<int> l, r; vector<S> seg; vector<T> delay; LazySegTree(){} LazySegTree(int size){ this->size = size; int L = 1<<size; seg.resize(L*2), delay.resize(L*2); l.resize(L*2), r.resize(L*2); for(int i = 0; i < L; i++) l[L+i] = i, r[L+i] = i; for(int i = L-1; i >= 1; i--) l[i] = l[i*2], r[i] = r[i*2+1]; } S idS(){ // return Matrix::Ident(4); } S opeS(S a, S b){ // return b*a; } T idT(){ // return 0; } T opeT(T a, T b){ // if(b == 0) return a; return b; } S act(S a, T d, ll k){ //note : multiply the length of the interval when RSQ return mat[d][r[k]-l[k]+1]; } void init(){ for(int i = 0; i < (1<<(size+1)); i++){ seg[i] = idS(), delay[i] = idT(); } } void set(int i, S x){ seg[i+(1<<size)] = x; } void setup(){ for(int i = (1<<size)-1; i >= 1; i--) seg[i] = opeS(seg[i*2], seg[i*2+1]); } void eval(int k){ if(delay[k] != idT()){ seg[k] = act(seg[k], delay[k], k); if(l[k] < r[k]){ delay[k*2] = opeT(delay[k*2], delay[k]); delay[k*2+1] = opeT(delay[k*2+1], delay[k]); } delay[k] = idT(); } } void update(int i, S val){ int l = 0, r = (1<<size)-1, k = 1; eval(k); for(int j = size-1; j >= 0; j--){ k <<= 1; if(i & (1<<j)) k++; eval(k); } k = i+(1<<size); seg[k] = val; for(int j = 0; j < size; j++){ k >>= 1; eval(k*2), eval(k*2+1); seg[k] = opeS(seg[k*2], seg[k*2+1]); } } void add(int a, int b, int k, T val){ eval(k); if(b < l[k] || r[k] < a) return; if(a <= l[k] && r[k] <= b){ delay[k] = opeT(delay[k], val); eval(k); return; } add(a, b, k*2, val); add(a, b, k*2+1, val); seg[k] = opeS(seg[k*2], seg[k*2+1]); } void add(ll a, ll b, T val){ if(a > b) return; add(a, b, 1, val); } S query(int a, int b, int k){ eval(k); if(b < l[k] || r[k] < a) return idS(); if(a <= l[k] && r[k] <= b) return seg[k]; S lval = query(a, b, k*2), rval = query(a, b, k*2+1); return opeS(lval, rval); } S query(ll a, ll b){ if(a > b) return idS(); return query(a, b, 1); } }; ll n, Q; ll a[100005]; int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> n; rep(i, 1, n) cin >> a[i]; rep(i, 1, 4){ mat[i][0] = mat[i][1] = Matrix::Ident(4); rep(j, 1, i) mat[i][1].at(i, j) = 1; rep(j, 2, (1<<17)) mat[i][j] = mat[i][j-1] * mat[i][1]; } LazySegTree seg(17); seg.init(); rep(i, 1, n) seg.set(i, mat[a[i]][1]); seg.setup(); cin >> Q; ll t, l, r, x; rep(i, 1, Q){ cin >> t >> l >> r; if(t == 1){ auto res = seg.query(l, r); ll ans = 0; rep(j, 1, 4) chmax(ans, res.at(j, 1)); cout << ans << "\n"; } else{ cin >> x; seg.add(l, r, x); } } return 0; }