結果
問題 | No.2695 Warp Zone |
ユーザー | takytank |
提出日時 | 2024-03-22 22:48:44 |
言語 | C# (.NET 8.0.203) |
結果 |
WA
|
実行時間 | - |
コード長 | 42,009 bytes |
コンパイル時間 | 10,955 ms |
コンパイル使用メモリ | 166,292 KB |
実行使用メモリ | 194,664 KB |
最終ジャッジ日時 | 2024-09-30 12:13:42 |
合計ジャッジ時間 | 12,614 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 56 ms
32,752 KB |
testcase_02 | AC | 55 ms
32,612 KB |
testcase_03 | AC | 321 ms
176,080 KB |
testcase_04 | AC | 311 ms
169,500 KB |
testcase_05 | AC | 309 ms
169,788 KB |
testcase_06 | AC | 318 ms
174,316 KB |
testcase_07 | AC | 320 ms
175,996 KB |
testcase_08 | AC | 61 ms
33,408 KB |
testcase_09 | AC | 163 ms
97,012 KB |
testcase_10 | AC | 60 ms
32,640 KB |
testcase_11 | AC | 96 ms
60,184 KB |
testcase_12 | AC | 202 ms
115,024 KB |
testcase_13 | AC | 59 ms
32,640 KB |
testcase_14 | AC | 232 ms
132,216 KB |
testcase_15 | AC | 157 ms
95,848 KB |
testcase_16 | AC | 87 ms
54,272 KB |
testcase_17 | AC | 100 ms
60,052 KB |
testcase_18 | AC | 266 ms
143,432 KB |
testcase_19 | AC | 59 ms
33,256 KB |
testcase_20 | AC | 242 ms
134,316 KB |
testcase_21 | AC | 234 ms
127,332 KB |
testcase_22 | AC | 117 ms
70,040 KB |
testcase_23 | AC | 202 ms
114,388 KB |
testcase_24 | AC | 59 ms
32,612 KB |
testcase_25 | AC | 61 ms
33,024 KB |
testcase_26 | AC | 59 ms
194,664 KB |
コンパイルメッセージ
復元対象のプロジェクトを決定しています... /home/judge/data/code/main.csproj を復元しました (154 ms)。 MSBuild のバージョン 17.9.6+a4ecab324 (.NET) main -> /home/judge/data/code/bin/Release/net8.0/main.dll main -> /home/judge/data/code/bin/Release/net8.0/publish/
ソースコード
using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Globalization; using System.IO; using System.Linq; using System.Numerics; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.Intrinsics.X86; using System.Text; using System.Threading; namespace YukiCoder { class Program { [MethodImpl(MethodImplOptions.AggressiveOptimization)] static void Main() { using var cin = new Scanner(); var (h, w, n) = cin.Int3(); var abcd = new (int a, int b, int c, int d)[n]; for (int i = 0; i < n; i++) { abcd[i] = cin.Int4(-1); } long Dist(long y1, long x1, long y2, long x2) { return Math.Abs(y1 - y2) + Math.Abs(x1 - x2); } int s = n * 2; int t = s + 1; var sp = new ShortestPath((n * 2) + 2); for (int i = 0; i < n; i++) { sp.AddEdge(i, i + n, 1); for (int j = i + 1; j < n; j++) { sp.AddEdge2W(i, j, Dist(abcd[i].a, abcd[i].b, abcd[j].a, abcd[j].b)); sp.AddEdge2W(i + n, j, Dist(abcd[i].c, abcd[i].d, abcd[j].a, abcd[j].b)); sp.AddEdge2W(i, j + n, Dist(abcd[i].a, abcd[i].b, abcd[j].c, abcd[j].d)); sp.AddEdge2W(i + n, j + n, Dist(abcd[i].c, abcd[i].d, abcd[j].c, abcd[j].d)); } sp.AddEdge2W(i, s, Dist(abcd[i].a, abcd[i].b, 0, 0)); sp.AddEdge2W(i + n, s, Dist(abcd[i].c, abcd[i].d, 0, 0)); sp.AddEdge2W(i, t, Dist(abcd[i].a, abcd[i].b, h - 1, w - 1)); sp.AddEdge2W(i + n, t, Dist(abcd[i].c, abcd[i].d, h - 1, w - 1)); } sp.Build(); var dists = sp.Dijkstra(s); long ans = dists[t]; Console.WriteLine(ans); } } public class ShortestPath { private readonly int n_; private readonly List<(int to, long d)>[] tempEdges_; private readonly (int to, long d)[][] edges_; public ShortestPath(int n) { n_ = n; edges_ = new (int to, long d)[n][]; tempEdges_ = new List<(int v, long d)>[n]; for (int i = 0; i < n; i++) { tempEdges_[i] = new List<(int v, long d)>(); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void AddEdge(int p, int q, long d = 1) => tempEdges_[p].Add((q, d)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void AddEdge2W(int u, int v, long d = 1) { tempEdges_[u].Add((v, d)); tempEdges_[v].Add((u, d)); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Build() { for (int i = 0; i < n_; i++) { edges_[i] = tempEdges_[i].ToArray(); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public ReadOnlySpan<(int to, long d)> GetEdge(int i) => edges_[i].AsSpan(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public ReadOnlySpan<int> GetPath(int s, int t, int[] prevs) { var path = new List<int> { t }; int cur = t; while (cur != s) { cur = prevs[cur]; path.Add(cur); } path.Reverse(); return path.ToArray().AsSpan(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] Bfs(int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var que = new Queue<int>(); que.Enqueue(start); while (que.Count > 0) { var cur = que.Dequeue(); foreach (var (to, d) in edges_[cur]) { long nextDistance = distances[cur] + d; if (nextDistance < distances[to]) { distances[to] = nextDistance; que.Enqueue(to); } } } return distances; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long[] distances, int[] prevs) BfsWithPath(int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var prevs = new int[n_].Fill(-1); var que = new Queue<int>(); que.Enqueue(start); while (que.Count > 0) { var cur = que.Dequeue(); foreach (var (to, d) in edges_[cur]) { long nextDistance = distances[cur] + d; if (nextDistance < distances[to]) { distances[to] = nextDistance; prevs[to] = cur; que.Enqueue(to); } } } return (distances, prevs); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] Bfs01(int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var que0 = new Queue<(int v, long distance)>(); var que1 = new Queue<(int v, long distance)>(); que0.Enqueue((start, 0)); while (que0.Count > 0 || que1.Count > 0) { var (v, distance) = que0.Count > 0 ? que0.Dequeue() : que1.Dequeue(); if (distance > distances[v]) { continue; } foreach (var (to, d) in edges_[v]) { long nextDistance = distances[v] + d; if (nextDistance < distances[to]) { distances[to] = nextDistance; if (d == 0) { que0.Enqueue((to, nextDistance)); } else { que1.Enqueue((to, nextDistance)); } } } } return distances; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long[] distances, int[] prevs) Bfs01WithPath(int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var prevs = new int[n_].Fill(-1); var que0 = new Queue<(int v, long distance)>(); var que1 = new Queue<(int v, long distance)>(); que0.Enqueue((start, 0)); while (que0.Count > 0 || que1.Count > 0) { var (v, distance) = que0.Count > 0 ? que0.Dequeue() : que1.Dequeue(); if (distance > distances[v]) { continue; } foreach (var (to, d) in edges_[v]) { long nextDistance = distances[v] + d; if (nextDistance < distances[to]) { distances[to] = nextDistance; prevs[to] = v; if (d == 0) { que0.Enqueue((to, nextDistance)); } else { que1.Enqueue((to, nextDistance)); } } } } return (distances, prevs); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long[] distances, bool existsNegativeCycle) BellmanFord( int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; bool existsNegativeCycle = false; for (int i = 0; i < n_; i++) { bool changes = false; for (int v = 0; v < n_; v++) { if (distances[v] == inf) { continue; } foreach (var (to, d) in edges_[v]) { long newDistance = distances[v] + d; if (newDistance < distances[to]) { changes = true; distances[to] = newDistance; } } } if (i == n_ - 1) { existsNegativeCycle = changes; } if (changes == false) { break; } } return (distances, existsNegativeCycle); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long[] distances, bool existsNegativeCycle, int[] prevs) BellmanFordWithPath( int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var prevs = new int[n_].Fill(-1); bool existsNegativeCycle = false; for (int i = 0; i < n_; i++) { bool changes = false; for (int v = 0; v < n_; v++) { if (distances[v] == inf) { continue; } foreach (var (to, d) in edges_[v]) { long newDistance = distances[v] + d; if (newDistance < distances[to]) { changes = true; distances[to] = newDistance; prevs[to] = v; } } } if (i == n_ - 1) { existsNegativeCycle = changes; } if (changes == false) { break; } } return (distances, existsNegativeCycle, prevs); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] Dijkstra(int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var que = new DijkstraQ(); que.Enqueue(0, start); while (que.Count > 0) { var (distance, v) = que.Dequeue(); if (distance > distances[v]) { continue; } foreach (var (to, d) in edges_[v]) { long nextDistance = distances[v] + d; if (nextDistance < distances[to]) { distances[to] = nextDistance; que.Enqueue(nextDistance, to); } } } return distances; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long[] distances, int[] prevs) DijkstraWithPath(int start, long inf = long.MaxValue) { var distances = new long[n_]; distances.AsSpan().Fill(inf); distances[start] = 0; var prevs = new int[n_].Fill(-1); var que = new DijkstraQ(); que.Enqueue(0, start); while (que.Count > 0) { var (distance, v) = que.Dequeue(); if (distance > distances[v]) { continue; } foreach (var (to, d) in edges_[v]) { long nextDistance = distances[v] + d; if (nextDistance < distances[to]) { distances[to] = nextDistance; prevs[to] = v; que.Enqueue(nextDistance, to); } } } return (distances, prevs); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[,] WarshallFloyd(long inf = long.MaxValue / 2) { var distances = new long[n_, n_]; for (int i = 0; i < n_; ++i) { for (int j = 0; j < n_; ++j) { if (i != j) { distances[i, j] = inf; } } } for (int i = 0; i < n_; i++) { foreach (var (j, d) in edges_[i]) { distances[i, j] = Math.Min(distances[i, j], d); } } for (int k = 0; k < n_; k++) { for (int i = 0; i < n_; i++) { for (int j = 0; j < n_; j++) { distances[i, j] = Math.Min( distances[i, j], distances[i, k] + distances[k, j]); } } } return distances; } } /// <summary> /// 前からの累積和を取るクラス /// </summary> public class PrefixSum { /// <summary>元の配列の長さ</summary> private readonly int _n; /// <summary>Build前は元の配列の値が、Build後は累積和の値が格納されている。</summary> /// <remarks> /// sumの計算でのif文を無くすために、元の配列のindexとは1ズレていて、1-basedで格納されている。 /// 累積後は以下の様になる。 /// [0] : ダミー(長さ0の区間の和=0に相当) /// [1] : [0, 0]の和 /// [2] : [0, 1]の和 /// [3] : [0, 2]の和 /// : /// [N-1] : [0, N-2]の和 /// [N] : [0, N-1]の和 /// </remarks> private readonly long[] _values; public long this[int index] { // 元の配列のindexとは1ズレている set => _values[index + 1] = value; get => _values[index + 1]; } /// <summary> /// 配列の長さだけを指定してインスタンスを生成 /// </summary> /// <param name="n">配列長</param> public PrefixSum(int n) { _n = n; _values = new long[n + 1]; } /// <summary> /// 累積前のインスタンスを指定してインスタンスを生成 /// </summary> /// <param name="values"> /// 累積したい配列。 /// 中身がコピーされるので、累積和を取ったときに、ここで渡した配列自体には影響しない。 /// </param> public PrefixSum(long[] values) : this(values.Length) { // 格納インデックスを1ずらしてコピー Array.Copy(values, 0, _values, 1, _n); } /// <summary> /// 累積和を取る /// </summary> /// <remarks> /// 2回以上呼び出した場合、呼び出す度に累積が行われる。 /// </remarks> public void Build() { for (int i = 0; i < _n; i++) { _values[i + 1] += _values[i]; } } /// <summary> /// 半開区間[L, R)の区間和をO(1)で計算 /// </summary> /// <param name="l">区間の左端インデックス</param> /// <param name="r">区間の右端インデックス</param> /// <returns>区間和</returns> public long Sum(int l, int r) { // 区間[0, R)は [0, L) + [L, R) であるため、[L, R)の和は sum[0, R) - sum[0, L) で計算出来る。 // [0, R)は半開区間なのでその和は[0, R-1]の和と等しくなるが、 // 値を格納している配列のインデックスは1つズレているので、配列に渡す値は結局Rそのままになる。 // Lも同様。 return _values[r] - _values[l]; } /// <summary> /// 区間和が最大となる区間と和をO(N)で求める /// </summary> /// <returns> /// l, r -> 和が最大となる半開区間[L, R) /// sum -> 区間和 /// </returns> public (int l, int r, long sum) CalculateMaxSum() { // 全ての区間和を計算するとO(N^2)になるが、 // 区間の右端を決め打ったときの最適な左端をO(1)で求めることで、全体としてO(N)にする。 // Sumの実装から分かるとおり、[0, L)までの和を最小にすれば[L, R)が最大になる。 // つまり、左から順番にRを決め打っていくときに、和が最小の位置を保持しつつ計算していけばよい。 // 何も引かないことで0は達成できるので、初期値は0。 long min = 0; int minIndex = -1; int l = 0; int r = 0; long max = long.MinValue; for (int i = 0; i < _n; ++i) { long value = _values[i + 1]; if (value - min > max) { max = value - min; l = minIndex + 1; // 最小の箇所は引かれる部分なので、求めたい区間として有効なのはその1個右から r = i; } if (min > value) { minIndex = i; min = value; } } // 半開区間にするための+1 ++r; return (l, r, max); } /// <summary> /// 区間和が最小となる区間と和をO(N)で求める /// </summary> /// <returns> /// l, r -> 和が最小となる半開区間[L, R) /// sum -> 区間和 /// </returns> public (int l, int r, long sum) CalculateMinSum() { // CalculateMaxSumと同様に和が最大の位置を保持しつつ計算する。 long max = 0; int maxIndex = -1; int l = 0; int r = 0; long min = long.MaxValue; for (int i = 0; i < _n; ++i) { long value = _values[i + 1]; if (value - max < min) { min = value - max; l = maxIndex + 1; r = i; } if (max < value) { maxIndex = i; max = value; } } ++r; return (l, r, min); } } public struct BitFlag { public static BitFlag Begin() => 0; public static BitFlag End(int bitCount) => 1 << bitCount; public static BitFlag FromBit(int bitNumber) => 1 << bitNumber; public static BitFlag Fill(int count) => (1 << count) - 1; public static IEnumerable<BitFlag> All(int n) { for (var f = Begin(); f < End(n); ++f) { yield return f; } } private readonly int flags_; public int Flag => flags_; public bool this[int bitNumber] => (flags_ & (1 << bitNumber)) != 0; public BitFlag(int flags) { flags_ = flags; } public bool Has(BitFlag target) => (flags_ & target.flags_) == target.flags_; public bool Has(int target) => (flags_ & target) == target; public bool HasBit(int bitNumber) => (flags_ & (1 << bitNumber)) != 0; public BitFlag OrBit(int bitNumber) => flags_ | (1 << bitNumber); public BitFlag AndBit(int bitNumber) => flags_ & (1 << bitNumber); public BitFlag XorBit(int bitNumber) => flags_ ^ (1 << bitNumber); public BitFlag ComplementOf(BitFlag sub) => flags_ ^ sub.flags_; public int PopCount() => BitOperations.PopCount((uint)flags_); public static BitFlag operator ++(BitFlag src) => new BitFlag(src.flags_ + 1); public static BitFlag operator --(BitFlag src) => new BitFlag(src.flags_ - 1); public static BitFlag operator |(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ | rhs.flags_); public static BitFlag operator |(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ | rhs); public static BitFlag operator |(int lhs, BitFlag rhs) => new BitFlag(lhs | rhs.flags_); public static BitFlag operator &(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ & rhs.flags_); public static BitFlag operator &(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ & rhs); public static BitFlag operator &(int lhs, BitFlag rhs) => new BitFlag(lhs & rhs.flags_); public static BitFlag operator ^(BitFlag lhs, BitFlag rhs) => new BitFlag(lhs.flags_ ^ rhs.flags_); public static BitFlag operator ^(BitFlag lhs, int rhs) => new BitFlag(lhs.flags_ ^ rhs); public static BitFlag operator ^(int lhs, BitFlag rhs) => new BitFlag(lhs ^ rhs.flags_); public static BitFlag operator <<(BitFlag bit, int shift) => bit.flags_ << shift; public static BitFlag operator >>(BitFlag bit, int shift) => bit.flags_ >> shift; public static bool operator <(BitFlag lhs, BitFlag rhs) => lhs.flags_ < rhs.flags_; public static bool operator <(BitFlag lhs, int rhs) => lhs.flags_ < rhs; public static bool operator <(int lhs, BitFlag rhs) => lhs < rhs.flags_; public static bool operator >(BitFlag lhs, BitFlag rhs) => lhs.flags_ > rhs.flags_; public static bool operator >(BitFlag lhs, int rhs) => lhs.flags_ > rhs; public static bool operator >(int lhs, BitFlag rhs) => lhs > rhs.flags_; public static bool operator <=(BitFlag lhs, BitFlag rhs) => lhs.flags_ <= rhs.flags_; public static bool operator <=(BitFlag lhs, int rhs) => lhs.flags_ <= rhs; public static bool operator <=(int lhs, BitFlag rhs) => lhs <= rhs.flags_; public static bool operator >=(BitFlag lhs, BitFlag rhs) => lhs.flags_ >= rhs.flags_; public static bool operator >=(BitFlag lhs, int rhs) => lhs.flags_ >= rhs; public static bool operator >=(int lhs, BitFlag rhs) => lhs >= rhs.flags_; public static implicit operator BitFlag(int t) => new BitFlag(t); public static implicit operator int(BitFlag t) => t.flags_; public override string ToString() => $"{Convert.ToString(flags_, 2).PadLeft(32, '0')} ({flags_})"; public SubBitsEnumerator SubBits => new SubBitsEnumerator(flags_); public struct SubBitsEnumerator : IEnumerable<BitFlag> { private readonly int flags_; public SubBitsEnumerator(int flags) { flags_ = flags; } IEnumerator<BitFlag> IEnumerable<BitFlag>.GetEnumerator() => new Enumerator(flags_); IEnumerator IEnumerable.GetEnumerator() => new Enumerator(flags_); public Enumerator GetEnumerator() => new Enumerator(flags_); public struct Enumerator : IEnumerator<BitFlag> { private readonly int src_; public BitFlag Current { get; private set; } object IEnumerator.Current => Current; public Enumerator(int flags) { src_ = flags; Current = flags + 1; } public void Dispose() { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool MoveNext() => (Current = --Current & src_) > 0; [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Reset() => Current = src_; } } } public class HashMap<TKey, TValue> : Dictionary<TKey, TValue> { public static HashMap<TKey, TValue> Merge( HashMap<TKey, TValue> src1, HashMap<TKey, TValue> src2, Func<TValue, TValue, TValue> mergeValues) { if (src1.Count < src2.Count) { (src1, src2) = (src2, src1); } foreach (var key in src2.Keys) { src1[key] = mergeValues(src1[key], src2[key]); } return src1; } private readonly Func<TKey, TValue> initialzier_; public HashMap(Func<TKey, TValue> initialzier) : base() { initialzier_ = initialzier; } public HashMap(Func<TKey, TValue> initialzier, int capacity) : base(capacity) { initialzier_ = initialzier; } new public TValue this[TKey key] { get { if (TryGetValue(key, out TValue value)) { return value; } else { var init = initialzier_(key); base[key] = init; return init; } } set { base[key] = value; } } public HashMap<TKey, TValue> Merge( HashMap<TKey, TValue> src, Func<TValue, TValue, TValue> mergeValues) { foreach (var key in src.Keys) { this[key] = mergeValues(this[key], src[key]); } return this; } } public class JagList2<T> where T : struct { private readonly int n_; private readonly List<T>[] tempValues_; private T[][] values_; public int Count => n_; public List<T>[] Raw => tempValues_; public T[][] Values => values_; public T[] this[int index] => values_[index]; public JagList2(int n) { n_ = n; tempValues_ = new List<T>[n]; for (int i = 0; i < n; ++i) { tempValues_[i] = new List<T>(); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(int i, T value) => tempValues_[i].Add(value); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Build() { values_ = new T[n_][]; for (int i = 0; i < values_.Length; ++i) { values_[i] = tempValues_[i].ToArray(); } } } public class DijkstraQ { private int count_ = 0; private long[] distanceHeap_; private int[] vertexHeap_; public int Count => count_; public DijkstraQ() { distanceHeap_ = new long[8]; vertexHeap_ = new int[8]; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Enqueue(long distance, int v) { if (distanceHeap_.Length == count_) { var newDistanceHeap = new long[distanceHeap_.Length << 1]; var newVertexHeap = new int[vertexHeap_.Length << 1]; Unsafe.CopyBlock( ref Unsafe.As<long, byte>(ref newDistanceHeap[0]), ref Unsafe.As<long, byte>(ref distanceHeap_[0]), (uint)(8 * count_)); Unsafe.CopyBlock( ref Unsafe.As<int, byte>(ref newVertexHeap[0]), ref Unsafe.As<int, byte>(ref vertexHeap_[0]), (uint)(4 * count_)); distanceHeap_ = newDistanceHeap; vertexHeap_ = newVertexHeap; } ref var dRef = ref distanceHeap_[0]; ref var vRef = ref vertexHeap_[0]; Unsafe.Add(ref dRef, count_) = distance; Unsafe.Add(ref vRef, count_) = v; ++count_; int c = count_ - 1; while (c > 0) { int p = (c - 1) >> 1; var tempD = Unsafe.Add(ref dRef, p); if (tempD <= distance) { break; } else { Unsafe.Add(ref dRef, c) = tempD; Unsafe.Add(ref vRef, c) = Unsafe.Add(ref vRef, p); c = p; } } Unsafe.Add(ref dRef, c) = distance; Unsafe.Add(ref vRef, c) = v; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long distance, int v) Dequeue() { ref var dRef = ref distanceHeap_[0]; ref var vRef = ref vertexHeap_[0]; (long distance, int v) ret = (dRef, vRef); int n = count_ - 1; var distance = Unsafe.Add(ref dRef, n); var vertex = Unsafe.Add(ref vRef, n); int p = 0; int c = (p << 1) + 1; while (c < n) { if (c != n - 1 && Unsafe.Add(ref dRef, c + 1) < Unsafe.Add(ref dRef, c)) { ++c; } var tempD = Unsafe.Add(ref dRef, c); if (distance > tempD) { Unsafe.Add(ref dRef, p) = tempD; Unsafe.Add(ref vRef, p) = Unsafe.Add(ref vRef, c); p = c; c = (p << 1) + 1; } else { break; } } Unsafe.Add(ref dRef, p) = distance; Unsafe.Add(ref vRef, p) = vertex; --count_; return ret; } } public struct ModInt { //public const long P = 1000000007; public const long P = 998244353; //public const long P = 2; public const long ROOT = 3; // (924844033, 5) // (998244353, 3) // (1012924417, 5) // (167772161, 3) // (469762049, 3) // (1224736769, 3) private long value_; public static ModInt New(long value, bool mods) => new ModInt(value, mods); public ModInt(long value) => value_ = value; public ModInt(long value, bool mods) { if (mods) { value %= P; if (value < 0) { value += P; } } value_ = value; } public static ModInt operator +(ModInt lhs, ModInt rhs) { lhs.value_ = (lhs.value_ + rhs.value_) % P; return lhs; } public static ModInt operator +(long lhs, ModInt rhs) { rhs.value_ = (lhs + rhs.value_) % P; return rhs; } public static ModInt operator +(ModInt lhs, long rhs) { lhs.value_ = (lhs.value_ + rhs) % P; return lhs; } public static ModInt operator -(ModInt lhs, ModInt rhs) { lhs.value_ = (P + lhs.value_ - rhs.value_) % P; return lhs; } public static ModInt operator -(long lhs, ModInt rhs) { rhs.value_ = (P + lhs - rhs.value_) % P; return rhs; } public static ModInt operator -(ModInt lhs, long rhs) { lhs.value_ = (P + lhs.value_ - rhs) % P; return lhs; } public static ModInt operator *(ModInt lhs, ModInt rhs) { lhs.value_ = lhs.value_ * rhs.value_ % P; return lhs; } public static ModInt operator *(long lhs, ModInt rhs) { rhs.value_ = lhs * rhs.value_ % P; return rhs; } public static ModInt operator *(ModInt lhs, long rhs) { lhs.value_ = lhs.value_ * rhs % P; return lhs; } public static ModInt operator /(ModInt lhs, ModInt rhs) => lhs * Inverse(rhs); public static implicit operator ModInt(long n) => new ModInt(n, true); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ModInt Inverse(ModInt value) => Pow(value, P - 2); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ModInt Pow(ModInt value, long k) => Pow(value.value_, k); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ModInt Pow(long value, long k) { long ret = 1; while (k > 0) { if ((k & 1) != 0) { ret = ret * value % P; } value = value * value % P; k >>= 1; } return new ModInt(ret); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long ToLong() => value_; public override string ToString() => value_.ToString(); } public static class Helper { public static long INF => 1L << 50; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T Clamp<T>(this T value, T min, T max) where T : struct, IComparable<T> { if (value.CompareTo(min) <= 0) { return min; } if (value.CompareTo(max) >= 0) { return max; } return value; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) > 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMin<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) > 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value) where T : struct, IComparable<T> => target = target.CompareTo(value) < 0 ? value : target; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void UpdateMax<T>(this ref T target, T value, Action<T> onUpdated) where T : struct, IComparable<T> { if (target.CompareTo(value) < 0) { target = value; onUpdated(value); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long BinarySearchOKNG(long ok, long ng, Func<long, bool> satisfies) { while (ng - ok > 1) { long mid = (ok + ng) / 2; if (satisfies(mid)) { ok = mid; } else { ng = mid; } } return ok; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long BinarySearchNGOK(long ng, long ok, Func<long, bool> satisfies) { while (ok - ng > 1) { long mid = (ok + ng) / 2; if (satisfies(mid)) { ok = mid; } else { ng = mid; } } return ok; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, T initialValue) where T : struct => new T[n].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Array1<T>(int n, Func<int, T> initializer) => Enumerable.Range(0, n).Select(x => initializer(x)).ToArray(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Fill<T>(this T[] array, T value) where T : struct { array.AsSpan().Fill(value); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, T initialValule) where T : struct => new T[n, m].Fill(initialValule); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Array2<T>(int n, int m, Func<int, int, T> initializer) { var array = new T[n, m]; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { array[i, j] = initializer(i, j); } } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,] Fill<T>(this T[,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,] array, int i) => MemoryMarshal.CreateSpan<T>(ref array[i, 0], array.GetLength(1)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Array3<T>(int n1, int n2, int n3, T initialValue) where T : struct => new T[n1, n2, n3].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,] Fill<T>(this T[,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,] array, int i, int j) => MemoryMarshal.CreateSpan<T>(ref array[i, j, 0], array.GetLength(2)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Array4<T>(int n1, int n2, int n3, int n4, T initialValue) where T : struct => new T[n1, n2, n3, n4].Fill(initialValue); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[,,,] Fill<T>(this T[,,,] array, T initialValue) where T : struct { MemoryMarshal.CreateSpan<T>(ref array[0, 0, 0, 0], array.Length).Fill(initialValue); return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this T[,,,] array, int i, int j, int k) => MemoryMarshal.CreateSpan<T>(ref array[i, j, k, 0], array.GetLength(3)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static T[] Merge<T>(ReadOnlySpan<T> first, ReadOnlySpan<T> second) where T : IComparable<T> { var ret = new T[first.Length + second.Length]; int p = 0; int q = 0; while (p < first.Length || q < second.Length) { if (p == first.Length) { ret[p + q] = second[q]; q++; continue; } if (q == second.Length) { ret[p + q] = first[p]; p++; continue; } if (first[p].CompareTo(second[q]) < 0) { ret[p + q] = first[p]; p++; } else { ret[p + q] = second[q]; q++; } } return ret; } private static readonly int[] delta4_ = { 1, 0, -1, 0, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<(int i, int j)> Adjacence4(int i, int j, int imax, int jmax) { for (int dn = 0; dn < 4; ++dn) { int d4i = i + delta4_[dn]; int d4j = j + delta4_[dn + 1]; if ((uint)d4i < (uint)imax && (uint)d4j < (uint)jmax) { yield return (d4i, d4j); } } } private static readonly int[] delta8_ = { 1, 0, -1, 0, 1, 1, -1, -1, 1 }; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<(int i, int j)> Adjacence8(int i, int j, int imax, int jmax) { for (int dn = 0; dn < 8; ++dn) { int d8i = i + delta8_[dn]; int d8j = j + delta8_[dn + 1]; if ((uint)d8i < (uint)imax && (uint)d8j < (uint)jmax) { yield return (d8i, d8j); } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<int> SubBitsOf(int bit) { for (int sub = bit; sub > 0; sub = --sub & bit) { yield return sub; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Reverse(string src) { var chars = src.ToCharArray(); for (int i = 0, j = chars.Length - 1; i < j; ++i, --j) { var tmp = chars[i]; chars[i] = chars[j]; chars[j] = tmp; } return new string(chars); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Exchange(string src, char a, char b) { var chars = src.ToCharArray(); for (int i = 0; i < chars.Length; i++) { if (chars[i] == a) { chars[i] = b; } else if (chars[i] == b) { chars[i] = a; } } return new string(chars); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void Swap(this string str, int i, int j) { var span = str.AsWriteableSpan(); (span[i], span[j]) = (span[j], span[i]); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static char Replace(this string str, int index, char c) { var span = str.AsWriteableSpan(); char old = span[index]; span[index] = c; return old; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<char> AsWriteableSpan(this string str) { var span = str.AsSpan(); return MemoryMarshal.CreateSpan(ref MemoryMarshal.GetReference(span), span.Length); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string Join<T>(this IEnumerable<T> values, string separator = "") => string.Join(separator, values); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string JoinNL<T>(this IEnumerable<T> values) => string.Join(Environment.NewLine, values); } public static class Extensions { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Span<T> AsSpan<T>(this List<T> list) { return Unsafe.As<FakeList<T>>(list).Array.AsSpan(0, list.Count); } private class FakeList<T> { public T[] Array = null; } } public class Scanner : IDisposable { private const int BUFFER_SIZE = 1024; private const int ASCII_SPACE = 32; private const int ASCII_CHAR_BEGIN = 33; private const int ASCII_CHAR_END = 126; private readonly string filePath_; private readonly Stream stream_; private readonly byte[] buf_ = new byte[BUFFER_SIZE]; private int length_ = 0; private int index_ = 0; private bool isEof_ = false; public Scanner(string file = "") { if (string.IsNullOrWhiteSpace(file)) { stream_ = Console.OpenStandardInput(); } else { filePath_ = file; stream_ = new FileStream(file, FileMode.Open); } Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }); } public void Dispose() { Console.Out.Flush(); stream_.Dispose(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string NextLine() { var sb = new StringBuilder(); for (var b = Char(); b >= ASCII_SPACE && b <= ASCII_CHAR_END; b = (char)Read()) { sb.Append(b); } return sb.ToString(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public char Char() { byte b; do { b = Read(); } while (b < ASCII_CHAR_BEGIN || ASCII_CHAR_END < b); return (char)b; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string String() { var sb = new StringBuilder(); for (var b = Char(); b >= ASCII_CHAR_BEGIN && b <= ASCII_CHAR_END; b = (char)Read()) { sb.Append(b); } return sb.ToString(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public string[] ArrayString(int length) { var array = new string[length]; for (int i = 0; i < length; ++i) { array[i] = String(); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int() => (int)Long(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int Int(int offset) => Int() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int) Int2(int offset = 0) => (Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int) Int3(int offset = 0) => (Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int, int) Int4(int offset = 0) => (Int(offset), Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (int, int, int, int, int) Int5(int offset = 0) => (Int(offset), Int(offset), Int(offset), Int(offset), Int(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int[] ArrayInt(int length, int offset = 0) { var array = new int[length]; for (int i = 0; i < length; ++i) { array[i] = Int(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long() { long ret = 0; byte b; bool ng = false; do { b = Read(); } while (b != '-' && (b < '0' || '9' < b)); if (b == '-') { ng = true; b = Read(); } for (; true; b = Read()) { if (b < '0' || '9' < b) { return ng ? -ret : ret; } else { ret = ret * 10 + b - '0'; } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Long(long offset) => Long() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long) Long2(long offset = 0) => (Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long) Long3(long offset = 0) => (Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long, long) Long4(long offset = 0) => (Long(offset), Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (long, long, long, long, long) Long5(long offset = 0) => (Long(offset), Long(offset), Long(offset), Long(offset), Long(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long[] ArrayLong(int length, long offset = 0) { var array = new long[length]; for (int i = 0; i < length; ++i) { array[i] = Long(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big() => new BigInteger(Long()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger Big(long offset) => Big() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger) Big2(long offset = 0) => (Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger) Big3(long offset = 0) => (Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger, BigInteger) Big4(long offset = 0) => (Big(offset), Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (BigInteger, BigInteger, BigInteger, BigInteger, BigInteger) Big5(long offset = 0) => (Big(offset), Big(offset), Big(offset), Big(offset), Big(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public BigInteger[] ArrayBig(int length, long offset = 0) { var array = new BigInteger[length]; for (int i = 0; i < length; ++i) { array[i] = Big(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double() => double.Parse(String(), CultureInfo.InvariantCulture); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double Double(double offset) => Double() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double) Double2(double offset = 0) => (Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double) Double3(double offset = 0) => (Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double, double) Double4(double offset = 0) => (Double(offset), Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (double, double, double, double, double) Double5(double offset = 0) => (Double(offset), Double(offset), Double(offset), Double(offset), Double(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public double[] ArrayDouble(int length, double offset = 0) { var array = new double[length]; for (int i = 0; i < length; ++i) { array[i] = Double(offset); } return array; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public decimal Decimal() => decimal.Parse(String(), CultureInfo.InvariantCulture); [MethodImpl(MethodImplOptions.AggressiveInlining)] public decimal Decimal(decimal offset) => Decimal() + offset; [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal) Decimal2(decimal offset = 0) => (Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal, decimal) Decimal3(decimal offset = 0) => (Decimal(offset), Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal, decimal, decimal) Decimal4(decimal offset = 0) => (Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public (decimal, decimal, decimal, decimal, decimal) Decimal5(decimal offset = 0) => (Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public decimal[] ArrayDecimal(int length, decimal offset = 0) { var array = new decimal[length]; for (int i = 0; i < length; ++i) { array[i] = Decimal(offset); } return array; } private byte Read() { if (isEof_) { throw new EndOfStreamException(); } if (index_ >= length_) { index_ = 0; if ((length_ = stream_.Read(buf_, 0, BUFFER_SIZE)) <= 0) { isEof_ = true; return 0; } } return buf_[index_++]; } public void Save(string text) { if (string.IsNullOrWhiteSpace(filePath_)) { return; } File.WriteAllText(filePath_ + "_output.txt", text); } } }