結果

問題 No.2083 OR Subset
ユーザー 👑 p-adicp-adic
提出日時 2024-03-27 22:36:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,990 ms / 3,000 ms
コード長 58,706 bytes
コンパイル時間 3,188 ms
コンパイル使用メモリ 239,048 KB
実行使用メモリ 394,368 KB
最終ジャッジ日時 2024-09-30 14:37:47
合計ジャッジ時間 23,852 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 184 ms
198,896 KB
testcase_01 AC 184 ms
198,912 KB
testcase_02 AC 184 ms
198,912 KB
testcase_03 AC 1,090 ms
302,464 KB
testcase_04 AC 659 ms
255,800 KB
testcase_05 AC 1,785 ms
375,744 KB
testcase_06 AC 612 ms
248,960 KB
testcase_07 AC 221 ms
203,136 KB
testcase_08 AC 247 ms
206,080 KB
testcase_09 AC 1,082 ms
301,952 KB
testcase_10 AC 750 ms
264,832 KB
testcase_11 AC 504 ms
237,116 KB
testcase_12 AC 382 ms
222,336 KB
testcase_13 AC 1,990 ms
392,080 KB
testcase_14 AC 1,902 ms
386,764 KB
testcase_15 AC 1,920 ms
388,352 KB
testcase_16 AC 1,957 ms
392,576 KB
testcase_17 AC 1,949 ms
392,448 KB
testcase_18 AC 185 ms
198,912 KB
testcase_19 AC 1,942 ms
394,368 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef INCLUDE_MODE
  #define INCLUDE_MODE
  // #define REACTIVE
  // #define USE_GETLINE
#endif

#ifdef INCLUDE_MAIN

IN VO Solve()
{
  DEXPR( int , bound_N , 5000 , 100 );
  CIN_ASSERT( N , 1 , bound_N );
  CEXPR( ll , PLL , P );
  using type = QuotientRing<>;
  type::SetModulo( &PLL );
  SecondStirlingNumberCalculator<type,bound_N+1> ssn{};
  type overlapping[N+1][N+1] = {};
  overlapping[0][1] = type::one();
  overlapping[1][1] = type( 2 );
  FOREQ( j , 2 , N ){
    overlapping[j][1] = overlapping[j-1][1] * overlapping[1][1];
  }
  FOREQ( j , 0 , N ){
    auto& overlapping_j = overlapping[j];
    overlapping_j[0] = type::one();
    overlapping_j[1] -= type::Derepresent( j );
    FOREQ( i , 2 , N ){
      overlapping_j[i] = overlapping_j[i-1] * overlapping_j[1];
    }
  }
  type answer{};
  FOREQ( i , 0 , N ){
    FOREQ( j , 0 , i ){
      answer += ssn.CountDisjointCover( N , i , j ) * overlapping[j][N-i];
    }
  }
  RETURN( answer );
}
REPEAT_MAIN(1);

#else // INCLUDE_MAIN

#ifdef INCLUDE_SUB

// COMPAREに使用。圧縮時は削除する。
ll Naive( ll N , ll M , ll K )
{
  ll answer = N + M + K;
  return answer;
}

// COMPAREに使用。圧縮時は削除する。
ll Answer( ll N , ll M , ll K )
{
  // START_WATCH;
  ll answer = N + M + K;

  // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。
  // CEXPR( double , TL , 2000.0 );
  // while( CHECK_WATCH( TL ) ){

  // }
  return answer;
}

// 圧縮時は中身だけ削除する。
IN VO Experiment()
{
  // CEXPR( int , bound , 10 );
  // FOREQ( N , 0 , bound ){
  //   FOREQ( M , 0 , bound ){
  //     FOREQ( K , 0 , bound ){
  //   	COUT( N , M , K , ":" , Naive( N , M , K ) );
  //     }
  //   }
  //   // cout << Naive( N ) << ",\n"[N==bound];
  // }
}

// 圧縮時は中身だけ削除する。
IN VO SmallTest()
{
  // CEXPR( int , bound , 10 );
  // FOREQ( N , 0 , bound ){
  //   FOREQ( M , 0 , bound ){
  //     FOREQ( K , 0 , bound ){
  //   	COMPARE( N , M , K );
  //     }
  //   }
  // }
}

// 圧縮時は中身だけ削除する。
IN VO RandomTest()
{
  // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N );
  // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M );
  // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K );
  // COMPARE( N , M , N );
}

#define INCLUDE_MAIN
#include __FILE__

#else // INCLUDE_SUB

#ifdef INCLUDE_LIBRARY

/*

C-x 3 C-x o C-x C-fによるファイル操作用

BFS (5KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt

CoordinateCompress (3KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt

DFSOnTree (11KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp

Divisor (4KB)
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt

IntervalAddBIT (9KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt

Polynomial (21KB)
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt

UnionFind (3KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt

*/

// VVV 常設でないライブラリは以下に挿入する。

template <typename T , int length>
class SecondStirlingNumberCalculator
{

private:
  // N元集合の非交叉非空部分集合i個による被覆の個数をm_val[N][i]に格納する。
  T m_val[length][length];

public:
  // (コンパイル時に)計算量O(length^2)で構築する。
  constexpr inline SecondStirlingNumberCalculator();

  constexpr inline const T ( &operator[]( const int& i ) const )[length];

  // 以下N<lengthの場合のみサポート。(i<lengthでなくてもよい)

  // N元集合の非交叉非空部分集合i個による被覆の個数を返す。(O(1))
  constexpr inline T CountDisjointCover( const int& N , const int& i ) const;
  // N元集合の非交叉非空部分集合i個の個数を返す。(O(1))
  constexpr inline T CountDisjointSubset( const int& N , const int& i ) const;

  // 以下Tが正整数Mに対するMod<M>と表せる場合のみサポート。

  // N元集合の長さiの非交叉非空部分集合列による被覆の個数を返す。(O(log min{N,i}))
  // (i彩色の個数はこれらを足し合わせればよい)
  inline T CountDisjointCoverSequence( const int& N , const int& i ) const;
  // N元集合の長さiの非交叉非空部分集合列の個数を返す。(O(log min{N,i}))
  inline T CountDisjointSubsetSequence( const int& N , const int& i ) const;

  // 以下Mがlength以上の素数である場合のみサポート。

  // N元集合の要素数nの部分集合の非交叉非空部分集合i個による被覆の個数を返す。(O(log N))
  inline T CountDisjointCover( const int& N , const int& n , const int& i ) const;
  // N元集合の要素数nの部分集合の長さiの非交叉非空部分集合列による被覆の個数を返す。(O(log N))
  inline T CountDisjointCoverSequence( const int& N , const int& n , const int& i ) const;
  
};

template <typename T , int length> constexpr inline SecondStirlingNumberCalculator<T,length>::SecondStirlingNumberCalculator() : m_val() 
{
  
  m_val[0][0] = 1;

  for( int i = 1 ; i < length ; i++ ){

    auto& m_val_i = m_val[i];
    const auto& m_val_i_minus = m_val[i - 1];

    for( int j = 1 ; j < i ; j++ ){

      ( ( m_val_i[j] = m_val_i_minus[j] ) *= j ) += m_val_i_minus[j - 1];

    }

    m_val_i[i] = 1;

  }

}

template <typename T , int length> constexpr inline const T ( &SecondStirlingNumberCalculator<T,length>::operator[]( const int& i ) const )[length] { assert( i < length ); return m_val[i]; }

template <typename T , int length> constexpr inline T SecondStirlingNumberCalculator<T,length>::CountDisjointCover( const int& N , const int& i ) const { assert( N < length ); return i <= N ? m_val[N][i] : T(); }
template <typename T , int length> constexpr inline T SecondStirlingNumberCalculator<T,length>::CountDisjointSubset( const int& N , const int& i ) const { assert( N < length ); return i < N ? m_val[N][i] + m_val[N][i+1] : i == N ? m_val[N][i] : T(); }

template <typename T , int length> inline T SecondStirlingNumberCalculator<T,length>::CountDisjointCoverSequence( const int& N , const int& i ) const { return CountDisjointCover( N , i ) * T::Factorial( i ); }
template <typename T , int length> inline T SecondStirlingNumberCalculator<T,length>::CountDisjointSubsetSequence( const int& N , const int& i ) const { return CountDisjointSubset( N , i ) * T::Factorial( i ); }

template <typename T , int length> inline T SecondStirlingNumberCalculator<T,length>::CountDisjointCover( const int& N , const int& n , const int& i ) const { return CountDisjointCover( n , i ) * T::Combination( N , n ); }
template <typename T , int length> inline T SecondStirlingNumberCalculator<T,length>::CountDisjointCoverSequence( const int& N , const int& n , const int& i ) const { return CountDisjointCoverSequence( n , i ) * T::Combination( N , n ); }

template <typename INT> class QuotientRing;

template <typename INT>
class StaticModuloForQuotientRing
{

  friend class QuotientRing<INT>;
  
private:
  static const INT* g_p;
  StaticModuloForQuotientRing() = delete;

};

template <typename INT> const INT* StaticModuloForQuotientRing<INT>::g_p = nullptr;

#define DECLARATION_OF_ARITHMETIC_FOR_QUOTIENT( OPR , EX )		   \
  inline constexpr QuotientRing<U> operator OPR( QuotientRing<U> n ) const EX; \

#define DEFINITION_OF_ARITHMETIC_FOR_QUOTIENT( OPR , EX , LEFT , OPR2 )	\
  template <typename U> inline constexpr QuotientRing<U> QuotientRing<U>::operator OPR( QuotientRing<U> n ) const EX { return move( LEFT OPR2 ## = *this ); } \
  template <typename U , typename T> inline constexpr QuotientRing<U> operator OPR( T n0 , const QuotientRing<U>& n1 ) EX { return move( QuotientRing<U>( move( n0 ) ) OPR ## = n1 ); } \

// インスタンスごとに異なる法を定めたい場合は
// MultiBase/a.hpp
// のクラスを用いる。
template <typename U = ll>
class QuotientRing
{

protected:
  U m_n;

public:
  inline constexpr QuotientRing() noexcept;
  inline constexpr QuotientRing( const QuotientRing<U>& n ) noexcept;
  inline constexpr QuotientRing( QuotientRing<U>&& n ) noexcept;
  inline constexpr QuotientRing( U n ) noexcept;

  inline constexpr QuotientRing<U>& operator=( QuotientRing<U> n ) noexcept;
  inline constexpr QuotientRing<U>& operator+=( const QuotientRing<U>& n ) noexcept;
  inline constexpr QuotientRing<U>& operator-=( const QuotientRing<U>& n ) noexcept;
  inline constexpr QuotientRing<U>& operator*=( const QuotientRing<U>& n ) noexcept;
  inline QuotientRing<U>& operator/=( QuotientRing<U> n );
  // n>=0である場合のみサポート。計算量O(log n)で2^n倍する。
  template <typename INT> inline constexpr QuotientRing<U>& operator<<=( INT n );
  // n>=0かつMが奇数である場合のみサポート。計算量O(n)で2^{-n}倍する。
  template <typename INT> inline constexpr QuotientRing<U>& operator>>=( INT n );

  inline constexpr QuotientRing<U>& operator++() noexcept;
  inline constexpr QuotientRing<U> operator++( int ) noexcept;
  inline constexpr QuotientRing<U>& operator--() noexcept;
  inline constexpr QuotientRing<U> operator--( int ) noexcept;

  inline constexpr bool operator==( QuotientRing<U> n ) const noexcept;
  inline constexpr bool operator!=( QuotientRing<U> n ) const noexcept;

  DECLARATION_OF_ARITHMETIC_FOR_QUOTIENT( + , noexcept );
  DECLARATION_OF_ARITHMETIC_FOR_QUOTIENT( - , noexcept );
  DECLARATION_OF_ARITHMETIC_FOR_QUOTIENT( * , noexcept );
  DECLARATION_OF_ARITHMETIC_FOR_QUOTIENT( / , );
  // Mが素数であるかexponent>=0である場合にのみサポート。exponent乗する。
  template <typename INT> inline constexpr QuotientRing<U> operator^( INT exponent ) const;
  // n>=0である場合のみサポート。計算量O(log n)で2^n倍を返す。
  template <typename INT> inline constexpr QuotientRing<U> operator<<( INT n ) const;
  // n>=0かつMが奇数である場合のみサポート。計算量O(n)で2^{-n}倍を返す。
  template <typename INT> inline constexpr QuotientRing<U> operator>>( INT n ) const;

  inline constexpr QuotientRing<U> operator-() const noexcept;
  // -1倍する。
  inline constexpr QuotientRing<U>& SignInvert() noexcept;
  // *g_pが素数である場合のみサポート。-1乗する。
  inline QuotientRing<U>& Invert();
  // *g_pが素数であるかexponent>=0である場合にのみサポート。exponent乗する。
  template <typename INT> inline constexpr QuotientRing<U>& Power( INT exponent );
  // グローバルスコープでswapを定義するためのもの。
  inline constexpr void swap( QuotientRing<U>& n ) noexcept;

  inline constexpr const U& Represent() noexcept;
  inline constexpr U Represent() const noexcept;
  // 0 <= n < *g_pの場合のみサポート。定数倍高速化のためにassertなし。
  static inline constexpr QuotientRing<U> Derepresent( U n ) noexcept;
  
  // *g_pが素数である場合のみサポート。
  static inline const QuotientRing<U>& Inverse( const U& n );
  // Uが整数型である場合にのみサポート。
  static inline const QuotientRing<U>& Factorial( const U& n );
  // *g_pが素数である場合のみサポート。
  static inline const QuotientRing<U>& FactorialInverse( const U& n );
  // *g_pが素数である場合のみサポート。
  static inline QuotientRing<U> Combination( const U& n , const U& i );

  static inline const QuotientRing<U>& zero() noexcept;
  static inline const QuotientRing<U>& one() noexcept;

  static inline const U& GetModulo() noexcept;
  static inline void SetModulo( const U* p ) noexcept;

private:
  template <typename INT> inline constexpr QuotientRing<U>& PositivePower( INT exponent ) noexcept;
  template <typename INT> inline constexpr QuotientRing<U>& NonNegativePower( INT exponent ) noexcept;

  template <typename T> inline constexpr QuotientRing<U>& Ref( T&& n ) noexcept;

};

template <typename U> inline constexpr QuotientRing<U>::QuotientRing() noexcept : m_n() {}
template <typename U> inline constexpr QuotientRing<U>::QuotientRing( const QuotientRing<U>& n ) noexcept : m_n( n.m_n ) {}
template <typename U> inline constexpr QuotientRing<U>::QuotientRing( QuotientRing<U>&& n ) noexcept : m_n( move( n.m_n ) ) {}
template <typename U> inline constexpr QuotientRing<U>::QuotientRing( U n ) noexcept : m_n( move( ( ( n %= *StaticModuloForQuotientRing<U>::g_p ) += *StaticModuloForQuotientRing<U>::g_p ) %= *StaticModuloForQuotientRing<U>::g_p ) ) {}

template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::operator=( QuotientRing<U> n ) noexcept { return Ref( m_n = move( n.m_n ) ); }

template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::operator+=( const QuotientRing<U>& n ) noexcept { return Ref( m_n += n.m_n ); }
template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::operator-=( const QuotientRing<U>& n ) noexcept { return *this += -n; }
template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::operator*=( const QuotientRing<U>& n ) noexcept { return Ref( ( ( m_n %= *StaticModuloForQuotientRing<U>::g_p ) *= n.m_n % *StaticModuloForQuotientRing<U>::g_p ) %= *StaticModuloForQuotientRing<U>::g_p ); }

template <typename U> inline QuotientRing<U>& QuotientRing<U>::operator/=( QuotientRing<U> n ) { return operator*=( n.Invert() ); }
template <typename U> template <typename INT> inline constexpr QuotientRing<U>& QuotientRing<U>::operator<<=( INT n ) { assert( n >= 0 ); return *this *= QuotientRing<U>( 2 ).NonNegativePower( move( n ) ); }
template <typename U> template <typename INT> inline constexpr QuotientRing<U>& QuotientRing<U>::operator>>=( INT n ) { assert( n >=0 ); while( n-- > 0 ){ ( ( m_n & 1 ) == 0 ? m_n : m_n += *StaticModuloForQuotientRing<U>::g_p ) >>= 1; } return *this; }

template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::operator++() noexcept { return Ref( ++m_n ); }
template <typename U> inline constexpr QuotientRing<U> QuotientRing<U>::operator++( int ) noexcept { QuotientRing<U> n{ *this }; operator++(); return n; }
template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::operator--() noexcept { return Ref( --( m_n == 0 ? m_n += *StaticModuloForQuotientRing<U>::g_p : m_n ) ); }
template <typename U> inline constexpr QuotientRing<U> QuotientRing<U>::operator--( int ) noexcept { QuotientRing<U> n{ *this }; operator--(); return n; }

template <typename U> inline constexpr bool QuotientRing<U>::operator==( QuotientRing<U> n ) const noexcept { return ( n -= *this ).m_n % *StaticModuloForQuotientRing<U>::g_p == 0; }
template <typename U> inline constexpr bool QuotientRing<U>::operator!=( QuotientRing<U> n ) const noexcept { return !( *this == n ); }

DEFINITION_OF_ARITHMETIC_FOR_QUOTIENT( + , noexcept , n , + );
DEFINITION_OF_ARITHMETIC_FOR_QUOTIENT( - , noexcept , n.SignInvert() , + );
DEFINITION_OF_ARITHMETIC_FOR_QUOTIENT( * , noexcept , n , * );
DEFINITION_OF_ARITHMETIC_FOR_QUOTIENT( / , , n.Invert() , * );
template <typename U> template <typename INT> inline constexpr QuotientRing<U> QuotientRing<U>::operator^( INT exponent ) const { return move( QuotientRing<U>( *this ).Power( move( exponent ) ) ); }
template <typename U> template <typename INT> inline constexpr QuotientRing<U> QuotientRing<U>::operator<<( INT n ) const { return move( QuotientRing<U>( *this ) <<= move( n ) ); }
template <typename U> template <typename INT> inline constexpr QuotientRing<U> QuotientRing<U>::operator>>( INT n ) const { return move( QuotientRing<U>( *this ) >>= move( n ) ); }

template <typename U> inline constexpr QuotientRing<U> QuotientRing<U>::operator-() const noexcept { return move( QuotientRing<U>( *this ).SignInvert() ); }
template <typename U> inline constexpr QuotientRing<U>& QuotientRing<U>::SignInvert() noexcept { return Ref( m_n = *StaticModuloForQuotientRing<U>::g_p - ( m_n %= *StaticModuloForQuotientRing<U>::g_p ) ); }

template <typename U> inline QuotientRing<U>& QuotientRing<U>::Invert() { assert( ( m_n %= *StaticModuloForQuotientRing<U>::g_p ) != 0 ); return NonNegativePower( U( *StaticModuloForQuotientRing<U>::g_p - 2 ) ); }

template <typename U> template <typename INT> inline constexpr QuotientRing<U>& QuotientRing<U>::PositivePower( INT exponent ) noexcept { U power{ this->m_n }; exponent--; while( exponent != 0 ){ ( exponent & 1 ) == 1 ? ( *this *= power ).m_n %= *StaticModuloForQuotientRing<U>::g_p : *this; exponent >>= 1; ( power *= power ) %= *StaticModuloForQuotientRing<U>::g_p; } return *this; }
template <typename U> template <typename INT> inline constexpr QuotientRing<U>& QuotientRing<U>::NonNegativePower( INT exponent ) noexcept { return exponent == 0 ? Ref( m_n = *StaticModuloForQuotientRing<U>::g_p == 1 ? 0 : 1 ) : Ref( PositivePower( move( exponent ) ) ); }
template <typename U> template <typename INT> inline constexpr QuotientRing<U>& QuotientRing<U>::Power( INT exponent ) { bool neg = exponent < 0; assert( !( ( m_n %= *StaticModuloForQuotientRing<U>::g_p ) == 0 && neg ) ); return neg ? PositivePower( move( exponent *= -( *StaticModuloForQuotientRing<U>::g_p - 2 ) ) ) : NonNegativePower( move( exponent ) ); }

template <typename U> inline constexpr void QuotientRing<U>::swap( QuotientRing<U>& n ) noexcept { std::swap( m_n , n.m_n ); }

template <typename U> inline const QuotientRing<U>& QuotientRing<U>::Inverse( const U& n ) { static vector<QuotientRing<U>> memory = { zero() , one() }; static U length_curr = 2; while( length_curr <= n ){ memory.push_back( zero() ); memory.back().m_n = *StaticModuloForQuotientRing<U>::g_p - memory[*StaticModuloForQuotientRing<U>::g_p % length_curr].m_n * ( *StaticModuloForQuotientRing<U>::g_p / length_curr ) % *StaticModuloForQuotientRing<U>::g_p; length_curr++; } return memory[n]; }
template <typename U> inline const QuotientRing<U>& QuotientRing<U>::Factorial( const U& n ) { static vector<QuotientRing<U>> memory = { one() , one() }; static U length_curr = 2; while( length_curr <= n ){ memory.push_back( memory[length_curr - 1] * length_curr ); length_curr++; } return memory[n]; }
template <typename U> inline const QuotientRing<U>& QuotientRing<U>::FactorialInverse( const U& n ) { static vector<QuotientRing<U>> memory = { one() , one() }; static U length_curr = 2; while( length_curr <= n ){ memory.push_back( memory[length_curr - 1] * Inverse( length_curr ) ); length_curr++; } return memory[n]; }
template <typename U> inline QuotientRing<U> QuotientRing<U>::Combination( const U& n , const U& i ) { return i <= n ? Factorial( n ) * FactorialInverse( i ) * FactorialInverse( n - i ) : zero(); }

template <typename U> inline constexpr const U& QuotientRing<U>::Represent() noexcept { return m_n %= *StaticModuloForQuotientRing<U>::g_p; }
template <typename U> inline constexpr U QuotientRing<U>::Represent() const noexcept { return m_n % *StaticModuloForQuotientRing<U>::g_p; }
template <typename U> inline constexpr QuotientRing<U> QuotientRing<U>::Derepresent( U n ) noexcept { QuotientRing<U> n_copy{}; n_copy.m_n = move( n ); return n_copy; }

template <typename U> inline const QuotientRing<U>& QuotientRing<U>::zero() noexcept { static constexpr const QuotientRing<U> z{}; return z; }
template <typename U> inline const QuotientRing<U>& QuotientRing<U>::one() noexcept { static constexpr const QuotientRing<U> o = QuotientRing<U>::Derepresent( 1 ); return o; }

template <typename U> inline const U& QuotientRing<U>::GetModulo() noexcept { return *StaticModuloForQuotientRing<U>::g_p; }
template <typename U> inline void QuotientRing<U>::SetModulo( const U* p ) noexcept { assert( p != nullptr && *p != 0 ); StaticModuloForQuotientRing<U>::g_p = p; }

template <typename U> template <typename T> inline constexpr QuotientRing<U>& QuotientRing<U>::Ref( T&& n ) noexcept { return *this; }

template <typename U> inline QuotientRing<U> Inverse( const QuotientRing<U>& n ) { return move( QuotientRing<U>( n ).Invert() ); }

template <typename U , typename INT> inline constexpr QuotientRing<U> Power( QuotientRing<U> n , INT exponent ) { return move( n.Power( move( exponent ) ) ); }

template <typename U> inline constexpr void swap( QuotientRing<U>& n0 , QuotientRing<U>& n1 ) noexcept { n0.swap( n1 ); }

template <typename U> inline string to_string( QuotientRing<U>& n ) noexcept { return to_string( n.Represent() ) + " + " + to_string( QuotientRing<U>::GetModulo() ) + "Z"; }

template <typename U , class Traits> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , QuotientRing<U>& n ) { ll m; is >> m; n = m; return is; }
template <typename U , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const QuotientRing<U>& n ) { return os << n.Represent(); }

// AAA 常設でないライブラリは以上に挿入する。

#define INCLUDE_SUB
#include __FILE__

#else // INCLUDE_LIBRARY

#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else { if( exec_mode == experiment_mode ){ Experiment(); } else if( exec_mode == small_test_mode ){ SmallTest(); } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); REPEAT( test_case_num ){ RandomTest(); } } RE 0; } FINISH_MAIN
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) )
  #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); }
  #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' )
  #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
  #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl
  #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
  #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl
  #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
  #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
  #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
  #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
  #define SOLVE_ONLY 
  #define CERR( ... ) 
  #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
  #define CERR_A( A , N ) 
  #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
  #define CERR_ITR( A ) 
  #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#ifdef USE_GETLINE
  #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
  #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
  #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
  #define SET_LL( A ) cin >> A
  #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
  #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; }
  #define CIN_A( LL , A , N ) VE<LL> A( N ); SET_A( A , N );
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( A , N , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( A , N , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }

// 圧縮用
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual 
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
#define reSZ resize

// 型のエイリアス
#define decldecay_t(VAR)decay_t<decltype(VAR)>
TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
TE <TY INT> US T2 = pair<INT,INT>;
TE <TY INT> US T3 = tuple<INT,INT,INT>;
TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;
US path = pair<int,ll>;

// 入出力用
#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;}
TE <CL Traits> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is){RE is;}
TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}
TE <CL Traits> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator){RE is;}
TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}
DF_OF_COUT_FOR_VE(VE);
DF_OF_COUT_FOR_VE(LI);
DF_OF_COUT_FOR_VE(set);
DF_OF_COUT_FOR_VE(unordered_set);
TE <CL Traits,TY Arg1,TY Arg2> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO pair<Arg1,Arg2>& arg){RE os << arg.first << " " << arg.second;}
TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg& arg){RE os << arg;}
TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);}


// 算術用
TE <TY T> CE T PositiveBaseRS(CO T& a,CO T& p){RE a >= 0?a % p:p - 1 -((-(a + 1))% p);}
TE <TY T> CE T RS(CO T& a,CO T& p){RE PositiveBaseRS(a,p < 0?-p:p);}
TE <TY T> CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseRS(a,p))/ p;}
TE <TY T> CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);}

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  ST_AS( ! is_same<decldecay_t( ARGUMENT ),int>::value && ! is_same<decldecay_t( ARGUMENT ),uint>::value ); \
  decldecay_t( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
    decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
    WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){				\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  ll ANSWER{ 1 };							\
  {									\
    ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
    ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
    decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
    WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){				\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \
  ll ANSWER[CE_LENGTH];							\
  ll ANSWER_INV[CE_LENGTH];						\
  ll INVERSE[CE_LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_INDEX ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
    }									\
    ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
    FOREQ( i , 2 , MAX_INDEX ){						\
      ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \
    }									\
  }									\

// 二分探索用
// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
  ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \
  ll ANSWER = MINIMUM;							\
  {									\
    ll L_BS = MINIMUM;							\
    ll U_BS = MAXIMUM;							\
    ANSWER = UPDATE_ANSWER;						\
    ll EXPRESSION_BS;							\
    CO ll CO_TARGET_BS = ( CO_TARGET );			\
    ll DIFFERENCE_BS;							\
    WH( L_BS < U_BS ){						\
      DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \
      CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \
      if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){			\
	U_BS = UPDATE_U;						\
      } else {								\
	L_BS = UPDATE_L;						\
      }									\
      ANSWER = UPDATE_ANSWER;						\
    }									\
    if( L_BS > U_BS ){							\
      CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1  ); \
      CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \
      ANSWER = MAXIMUM + 1;						\
    } else {								\
      CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
      CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \
      CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" );	\
      EXPRESSION_BS = ( EXPRESSION );					\
      CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \
      if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){		\
	CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER );		\
      } else {								\
	CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
	CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \
	ANSWER = MAXIMUM + 1;						\
      }									\
    }									\
  }									\

// 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 )
// 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 )
// 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 )
// 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 )
// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。
TE <TY T> IN TY set<T>::iterator MaximumLeq(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.upper_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;}
// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。
TE <TY T> IN TY set<T>::iterator MaximumLt(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.lower_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;}
// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。
TE <TY T> IN TY set<T>::iterator MinimumGeq(set<T>& S,CO T& t){RE S.lower_bound(t);}
// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。
TE <TY T> IN TY set<T>::iterator MinimumGt(set<T>& S,CO T& t){RE S.upper_bound(t);}

// 尺取り法用
// VAR_TPA_LとVAR_TPA_RをINITで初期化し、VAR_TPA_RがCONTINUE_CONDITIONを満たす限り、
// 閉区間[VAR_TPA_L,VAR_TPA_R]が条件ON_CONDITIONを満たすか否かを判定し、
// trueになるかVAR_TAR_LがVAR_TAR_Rに追い付くまでVAR_TPA_Lの更新操作UPDATE_Lを繰り返し、
// その後VAR_TPA_Rの更新操作UPDATE_Rを行う。
// ON_CONDITIONがtrueとなる極大閉区間とその時点でのINFOをANSWERに格納する。
#define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO ) \
  VE<tuple<decldecay_t( INIT ),decldecay_t( INIT ),decldecay_t( INFO )>> ANSWER{}; \
  {									\
    auto init_TPA = INIT;						\
    decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO }; \
    auto ANSWER ## _prev = ANSWER ## _temp;				\
    auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp );			\
    auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp );			\
    auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp );			\
    bool on_TPA_prev = false;						\
    WH( true ){								\
      bool continuing = CONTINUE_CONDITION;				\
      bool on_TPA = continuing && ( ON_CONDITION );			\
      CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info );	\
      if( on_TPA_prev && ! on_TPA ){					\
	ANSWER.push_back( ANSWER ## _prev );				\
      }									\
      if( continuing ){							\
	if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){			\
	  ANSWER ## _prev = ANSWER ## _temp;				\
	  UPDATE_R;							\
	} else {							\
	  UPDATE_L;							\
	}								\
      } else {								\
	break;								\
      }									\
      on_TPA_prev = on_TPA;						\
    }									\
  }									\

// データ構造用
TE <TY T,TE <TY...> TY V> IN auto OP+(CO V<T>& a0,CO V<T>& a1)-> decldecay_t((declval<V<T>>().push_back(declval<T>()),a0)){if(a0.empty()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V<T> AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0 + *IT1);}RE AN;}
TE <TY T,TY U> IN pair<T,U> OP+(CO pair<T,U>& t0,CO pair<T,U>& t1){RE{t0.first + t1.first,t0.second + t1.second};}
TE <TY T,TY U,TY V> IN tuple<T,U,V> OP+(CO tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1)};}
TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP+(CO tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};}
TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;}
TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;}
TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;}
TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;}
TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;}
TE <TY T> IN T Id(CO T& v){RE v;}
TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;}
TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;}

// グラフ用
TE <TY T,TE <TY...> TY V> IN auto Get(CO V<T>& a){RE[&](CRI i = 0){RE a[i];};}
TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}

// グリッド問題用
int H,W,H_minus,W_minus,HW;
VE<string> wall_str;VE<VE<bool> > non_wall;
char walkable = '.',unwalkable = '#';
IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}
IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}
CO string direction[4]={"U","R","D","L"};
IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}
IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}
IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;}
IN VE<int> EdgeOnGrid(CRI v){VE<int>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back(EnumHW_inv({i+1,j}));}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back(EnumHW_inv({i,j+1}));}RE AN;}
IN VE<path> WeightedEdgeOnGrid(CRI v){VE<path>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back({EnumHW_inv({i+1,j}),1});}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}),1});}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back({EnumHW_inv({i,j+1}),1});}RE AN;}
IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);}
IN VO SetWallOnGrid(CRI i,VE<VE<bool>>& b){if(b.empty()){b.reSZ(H,VE<bool>(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable?false:(AS(S_i[j]==unwalkable),true);}}

// デバッグ用
#ifdef DEBUG
  IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
  VO AutoCheck( int& exec_mode , CO bool& use_getline );
  IN VO Solve();
  IN VO Experiment();
  IN VO SmallTest();
  IN VO RandomTest();
  ll GetRand( CRL Rand_min , CRL Rand_max );
  IN VO BreakPoint( CRI LINE ) {}
  int exec_mode;
  CEXPR( int , solve_mode , 0 );
  CEXPR( int , sample_debug_mode , 1 );
  CEXPR( int , submission_debug_mode , 2 );
  CEXPR( int , library_search_mode , 3 );
  CEXPR( int , experiment_mode , 4 );
  CEXPR( int , small_test_mode , 5 );
  CEXPR( int , random_test_mode , 6 );
  #ifdef USE_GETLINE
    CEXPR( bool , use_getline , true );
  #else
    CEXPR( bool , use_getline , false );
  #endif
#else
  ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }
#endif

// VVV 常設ライブラリは以下に挿入する。
// Map (1KB)
// c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};
TE <TY T , TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;

// Algebra (4KB)
// c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT()NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);};
TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}

// Graph (5KB)
// c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt
TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E>;TE <TY E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>;
TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1> && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E> && is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));}

// ConstexprModulo (7KB)
// c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt
CEXPR(uint,P,998244353);
#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/Debug/a_Body.hpp"
  US MP = Mod<P>;
#else
#define RP Represent
#define DeRP Derepresent
TE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}
#define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE
#define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX;
#define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;}
#define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M> OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);}
TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>& FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;ST CE uint& Normalise(uint& n)NE;};
US MP = Mod<P>;
TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;};
TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{RE Ref(m_n = MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = RS<M>(ull(m_n)* n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):NonNegativePW(uint(COantsForMod<M>::g_M_minus_2));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){AS(n < COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_CE(Mod<M> n){RE MO(n.NonNegativePW(M - 2));}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();}
#endif
// AAA 常設ライブラリは以上に挿入する。

#define INCLUDE_LIBRARY
#include __FILE__

#endif // INCLUDE_LIBRARY

#endif // INCLUDE_SUB

#endif // INCLUDE_MAIN
0