結果
問題 | No.2649 [Cherry 6th Tune C] Anthem Flower |
ユーザー | T101010101 |
提出日時 | 2024-03-28 14:03:05 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 256 ms / 2,000 ms |
コード長 | 30,150 bytes |
コンパイル時間 | 7,747 ms |
コンパイル使用メモリ | 352,996 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-15 05:48:07 |
合計ジャッジ時間 | 11,578 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 210 ms
6,820 KB |
testcase_02 | AC | 208 ms
6,820 KB |
testcase_03 | AC | 208 ms
6,816 KB |
testcase_04 | AC | 206 ms
6,816 KB |
testcase_05 | AC | 255 ms
6,816 KB |
testcase_06 | AC | 256 ms
6,820 KB |
testcase_07 | AC | 15 ms
6,816 KB |
testcase_08 | AC | 15 ms
6,820 KB |
testcase_09 | AC | 4 ms
6,820 KB |
testcase_10 | AC | 4 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 7 ms
6,816 KB |
testcase_14 | AC | 6 ms
6,816 KB |
testcase_15 | AC | 6 ms
6,816 KB |
testcase_16 | AC | 6 ms
6,820 KB |
testcase_17 | AC | 7 ms
6,820 KB |
testcase_18 | AC | 6 ms
6,820 KB |
testcase_19 | AC | 6 ms
6,820 KB |
testcase_20 | AC | 7 ms
6,820 KB |
testcase_21 | AC | 6 ms
6,820 KB |
testcase_22 | AC | 6 ms
6,820 KB |
testcase_23 | AC | 7 ms
6,816 KB |
testcase_24 | AC | 7 ms
6,820 KB |
testcase_25 | AC | 7 ms
6,820 KB |
testcase_26 | AC | 7 ms
6,820 KB |
testcase_27 | AC | 6 ms
6,820 KB |
testcase_28 | AC | 7 ms
6,816 KB |
testcase_29 | AC | 7 ms
6,820 KB |
testcase_30 | AC | 7 ms
6,820 KB |
testcase_31 | AC | 7 ms
6,820 KB |
testcase_32 | AC | 7 ms
6,820 KB |
testcase_33 | AC | 6 ms
6,816 KB |
testcase_34 | AC | 191 ms
6,816 KB |
コンパイルメッセージ
main.cpp: In function 'll round2(ll, ll)': main.cpp:114:9: warning: 'z' may be used uninitialized [-Wmaybe-uninitialized] 114 | int z = z / y; | ^ main.cpp:114:9: note: 'z' was declared here 114 | int z = z / y; | ^
ソースコード
#pragma region Macros #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2") #include <bits/extc++.h> // #include <atcoder/all> // using namespace atcoder; using namespace std; using namespace __gnu_pbds; // #include <boost/multiprecision/cpp_dec_float.hpp> // #include <boost/multiprecision/cpp_int.hpp> // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; // using Bdouble = mp::number<mp::cpp_dec_float<256>>; #define pb emplace_back #define int ll #define endl '\n' #define sqrt __builtin_sqrtl #define cbrt __builtin_cbrtl #define hypot __builtin_hypotl // #define y0 y3487465 // #define y1 y8687969 // #define j0 j1347829 // #define j1 j234892 #define next asdnext #define prev asdprev using ll = long long; using ld = long double; const ld PI = acosl(-1); const int INF = 1 << 30; const ll INFL = 1LL << 61; // const int MOD = 998244353; const int MOD = 1000000007; const ld EPS = 1e-10; const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; } const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗ const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1}; struct Edge { int from, to, cost; Edge() : from(-1), to(-1), cost(-1) {} Edge(int to, ll cost) : to(to), cost(cost) {} Edge(int from, int to, ll cost) : from(from), to(to), cost(cost) {} }; chrono::system_clock::time_point start, now; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); start = chrono::system_clock::now(); } __int128_t POW(__int128_t x, int n) { __int128_t ret = 1; assert(n >= 0); if (x == 1 or n == 0) ret = 1; else if (x == -1 && n % 2 == 0) ret = 1; else if (x == -1) ret = -1; else if (n % 2 == 0) { assert(x < INFL); ret = POW(x * x, n / 2); } else { assert(x < INFL); ret = x * POW(x, n - 1); } return ret; } int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq assert(y != 0); if (x >= 0 && y > 0) return x / y; if (x >= 0 && y < 0) return x / y - (x % y < 0); if (x < 0 && y < 0) return x / y + (x % y < 0); return x / y - (x % y < 0); // (x < 0 && y > 0) } int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr assert(y != 0); if (x >= 0) return x % y; __int128_t ret = x % y; // (x < 0) ret += (__int128_t)abs(y) * INFL; ret %= abs(y); return ret; } int floor(int x, int y) { // (ld)x / y 以下の最大の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x >= 0 ? x / y : (x + 1) / y - 1; } int ceil(int x, int y) { // (ld)x / y 以上の最小の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x > 0 ? (x - 1) / y + 1 : x / y; } int round(int x, int y) { assert(y != 0); return (x * 2 + y) / (y * 2); } int round(int x, int y, int k) { // (ld)(x/y)を10^kの位に関して四捨五入 assert(y != 0); // TODO return INFL; } int round2(int x, int y) { // 五捨五超入 // 未verify assert(y != 0); if (y < 0) y = -y, x = -x; int z = z / y; if ((z * 2 + 1) * y <= y * 2) z++; return z; } int floor(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return floor(x / y); } int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい assert(!equals(y, 0)); return ceil(x / y); } int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q // 未verify. 誤差対策TODO. EPS外してもいいかも。 assert(!equals(y, 0)); if (x >= 0 && y > 0) return floor(x / y)+EPS; if (x >= 0 && y < 0) return -floor(x / fabs(y)); if (x < 0 && y < 0) return floor(x / y) + (x - floor(x/y)*y < -EPS); return floor(x / y) - (x - floor(x/y)*y < -EPS); // (x < 0 && y > 0) } ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r // 未verify. 誤差対策TODO. -0.0が返りうる。 assert(!equals(y, 0)); if (x >= 0) return x - fabs(y)*fabs(per(x, y)); return x - fabs(y)*floor(x, fabs(y)); } int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO int seisuu(int x, int y) { assert(y != 0); return x / y; } int seisuu(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return (int)(x / y); } pair<int, int> max(const pair<int, int> &a, const pair<int, int> &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) return a; return b; } pair<int, int> min(const pair<int, int> &a, const pair<int, int> &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) return a; return b; } template <class T> bool chmax(T &a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T &a, const T& b) { if (a > b) { a = b; return true; } return false; } template <class T> T mid(T a, T b, T c) { return a + b + c - max({a, b, c}) - min({a, b, c}); } template <class T> void Sort(T &a, T &b, bool rev = false) { if (rev == false) { if (a > b) swap(a, b); } else { if (b > a) swap(b, a); } } template <class T> void sort(T &a, T &b, T &c, bool rev = false) { if (rev == false) { if (a > b) swap(a, b); if (a > c) swap(a, c); if (b > c) swap(b, c); } else { if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a); } } template <class T> void sort(T &a, T &b, T &c, T &d, bool rev = false) { if (rev == false) { if (a > b) swap(a, b); if (a > c) swap(a, c); if (a > d) swap(a, d); if (b > c) swap(b, c); if (b > d) swap(b, d); if (c > d) swap(c, d); } else { if (d > c) swap(d, c); if (d > b) swap(d, b); if (d > a) swap(d, a); if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a); } } int countl_zero(int x) { return __builtin_clzll(x); } int countl_one(int x) { int ret = 0; while (x % 2) { x /= 2; ret++; } return ret; } int countr_zero(int x) { return __builtin_ctzll(x); } int countr_one(int x) { int ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { k--; ret++; } return ret; } int popcount(int x) { return __builtin_popcountll(x); } int unpopcount(int x) { return 64 - __builtin_clzll(x) - __builtin_popcountll(x); } int top_bit(int x) { return 63 - __builtin_clzll(x);} // 2^kの位 int bot_bit(int x) { return __builtin_ctz(x);} // 2^kの位 int MSB(int x) { return 1 << (63 - __builtin_clzll(x)); } // mask int LSB(int x) { return (x & -x); } // mask int bit_width(int x) { return 64 - __builtin_clzll(x); } // 桁数 int ceil_log2(int x) { return 63 - __builtin_clzll(x); } int bit_floor(int x) { return 1 << (63 - __builtin_clzll(x)); } int floor_log2(int x) { return 64 - __builtin_clzll(x-1); } int bit_ceil(int x) { return 1 << (64 - __builtin_clzll(x-1)) - (x==1); } int hamming(int a, int b) { return popcount(a ^ b); } int compcnt(int x) { return (popcount(x^(x >> 1)) + (x&1)) / 2; } class UnionFind { public: UnionFind() = default; UnionFind(int N) : par(N), sz(N, 1) { iota(par.begin(), par.end(), 0); } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } vector<vector<int>> groups(int N) { vector<vector<int>> G(N); for (int x = 0; x < N; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector<int>& V) { return V.empty(); }), G.end()); return G; } private: vector<int> par, sz; }; template<typename T> struct BIT { int N; // 要素数 vector<T> bit[2]; // データの格納先 BIT(int N_) { init(N_); } void init(int N_) { N = N_ + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); } void add_sub(int p, int i, T x) { while (i < N) { bit[p][i] += x; i += (i & -i); } } void add(int l, int r, T x) { add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r); add_sub(1, l + 1, x); add_sub(1, r + 1, -x); } void add(int i, T x) { add(i, i + 1, x); } T sum_sub(int p, int i) { T ret = 0; while (i > 0) { ret += bit[p][i]; i -= (i & -i); } return ret; } T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; } T sum(int l, int r) { return sum(r) - sum(l); } T get(int i) { return sum(i, i + 1); } void set(int i, T x) { T s = get(i); add(i, -s + x); } }; template<int mod> class Modint { public: int val = 0; Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } Modint(const Modint &r) { val = r.val; } Modint operator -() { return Modint(-val); } // 単項 Modint operator +(const Modint &r) { return Modint(*this) += r; } Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; } Modint operator -(const Modint &r) { return Modint(*this) -= r; } Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; } Modint operator *(const Modint &r) { return Modint(*this) *= r; } Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; } Modint operator /(const Modint &r) { return Modint(*this) /= r; } Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; } Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置 Modint operator ++(signed) { ++*this; return *this; } // 後置 Modint& operator --() { val--; if (val < 0) val += mod; return *this; } Modint operator --(signed) { --*this; return *this; } Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; } Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; } Modint &operator /=(const Modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } Modint &operator /=(const int &q) { Modint r(q); int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const Modint& r) { return this -> val == r.val; } bool operator <(const Modint& r) { return this -> val < r.val; } bool operator >(const Modint& r) { return this -> val > r.val; } bool operator !=(const Modint& r) { return this -> val != r.val; } }; using mint = Modint<MOD>; // using Mint = modint998244353; istream &operator >>(istream &is, mint& x) { int t; is >> t; x = t; return (is); } ostream &operator <<(ostream &os, const mint& x) { return os << x.val; } mint modpow(const mint &x, int n) { if (n < 0) return (mint)1 / modpow(x, -n); // 未verify assert(n >= 0); if (n == 0) return 1; mint t = modpow(x, n / 2); t = t * t; if (n & 1) t = t * x; return t; } int modpow(__int128_t x, int n, int mod) { assert(n >= 0 && mod > 0); // TODO: n <= -1 __int128_t ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } int modinv(__int128_t x, int mod) { assert(mod > 0 && x > 0); if (x == 1) return 1; return mod - modinv(mod % x, mod) * (mod / x) % mod; } istream &operator >>(istream &is, __int128_t& x) { string S; is >> S; __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; x = ret * f; return (is); } ostream &operator <<(ostream &os, __int128_t x) { ostream::sentry s(os); if (s) { __uint128_t tmp = x < 0 ? -x : x; char buffer[128]; char *d = end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (x < 0) { --d; *d = '-'; } int len = end(buffer) - d; if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit); } return os; } __int128_t stoll(string &S) { __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; return ret * f; } __int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; } __int128_t lcm(__int128_t a, __int128_t b) { return a / gcd(a, b) * b; // lcmが__int128_tに収まる必要あり } string to_string(ld x, int k) { // xの小数第k位までをstring化する assert(k >= 0); stringstream ss; ss << setprecision(k + 2) << x; string s = ss.str(); if (s.find('.') == string::npos) s += '.'; int pos = s.find('.'); for (int i = 0; k >= (int)s.size() - 1 - pos; i++) s += '0'; s.pop_back(); if (s.back() == '.') s.pop_back(); return s; // stringstream ss; // 第k+1位を四捨五入して第k位まで返す // ss << setprecision(k + 1) << x; // string s = ss.str(); // if (s.find('.') == string::npos) s += '.'; // int pos = s.find('.'); // for (int i = 0; k > (int)s.size() - 1 - pos; i++) s += '0'; // if (s.back() == '.') s.pop_back(); // return s; } string to_string(__int128_t x) { string ret = ""; if (x < 0) { ret += "-"; x *= -1; } while (x) { ret += (char)('0' + x % 10); x /= 10; } reverse(ret.begin(), ret.end()); return ret; } string to_string(char c) { string s = ""; s += c; return s; } struct SXor128 { uint64_t x = 88172645463325252LL; unsigned Int() { x = x ^ (x << 7); return x = x ^ (x >> 9); } unsigned Int(unsigned mod) { x = x ^ (x << 7); x = x ^ (x >> 9); return x % mod; } unsigned Int(unsigned l, unsigned r) { x = x ^ (x << 7); x = x ^ (x >> 9); return x % (r - l + 1) + l; } double Double() { return double(Int()) / UINT_MAX; } } rnd; struct custom_hash { static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; template<class T> size_t HashCombine(const size_t seed,const T &v) { return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); } template<class T,class S> struct hash<pair<T,S>>{ size_t operator()(const pair<T,S> &keyval) const noexcept { return HashCombine(hash<T>()(keyval.first), keyval.second); } }; template<class T> struct hash<vector<T>>{ size_t operator()(const vector<T> &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } }; template<int N> struct HashTupleCore{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore<N-1>()(keyval); return HashCombine(s,get<N-1>(keyval)); } }; template <> struct HashTupleCore<0>{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; } }; template<class... Args> struct hash<tuple<Args...>>{ size_t operator()(const tuple<Args...> &keyval) const noexcept { return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval); } }; vector<mint> _fac, _finv, _inv; void COMinit(int N) { _fac.resize(N + 1); _finv.resize(N + 1); _inv.resize(N + 1); _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1; for (int i = 2; i <= N; i++) { _fac[i] = _fac[i-1] * mint(i); _inv[i] = -_inv[MOD % i] * mint(MOD / i); _finv[i] = _finv[i - 1] * _inv[i]; } } mint FAC(int N) { if (N < 0) return 0; return _fac[N]; } mint COM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[K] * _finv[N - K]; } mint PERM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[N - K]; } mint NHK(int N, int K) { if (N == 0 && K == 0) return 1; return COM(N + K - 1, K); } #pragma endregion using i64 = int64_t; constexpr i64 BASE = 1000000000; constexpr signed BASE_DIGITS = 9; struct BigInt { vector<i64> A; int sign; int size() const { if (A.empty()) return 0; int ret = (A.size() - 1) * BASE_DIGITS; i64 ca = A.back(); while (ca) { ret++; ca /= 10; } return ret; } BigInt pow(const BigInt &v) { BigInt ret = 1, a = *this, b = v; while (!b.isZero()) { if (b % 2) { ret *= a; } a *= a, b /= 2; } return ret; } string to_string() { stringstream ss; ss << *this; return ss.str(); } int digsum() { string s = to_string(); int ret = 0; for (char c : s) ret += c - '0'; return ret; } BigInt() : sign(1) {} BigInt(i64 v) { *this = v; } BigInt(const string &s) { read(s); } void operator=(const BigInt &v) { sign = v.sign; A = v.A; } void operator=(i64 v) { sign = 1; A.clear(); if (v < 0) { sign = -1, v = -v; } for (; v > 0; v = v / BASE) { A.pb(v % BASE); } } BigInt operator+(const BigInt &v) const { if (sign == v.sign) { BigInt res = v; for (int i = 0, carry = 0; i < max(A.size(), v.A.size()) or carry; i++) { if (i == res.A.size()) { res.A.pb(0); } res.A[i] += carry + (i < A.size() ? A[i] : 0); carry = res.A[i] >= BASE; if (carry) { res.A[i] -= BASE; } } return res; } return *this - (-v); } BigInt operator-(const BigInt &v) const { if (sign == v.sign) { if (abs() >= v.abs()) { BigInt res = *this; for (int i = 0, carry = 0; i < v.A.size() or carry; i++) { res.A[i] -= carry + (i < v.A.size() ? v.A[i] : 0); carry = res.A[i] < 0; if (carry) { res.A[i] += BASE; } } res.trim(); return res; } return -(v - *this); } return *this + (-v); } void operator*=(i64 v) { if (v < 0) { sign = -sign, v = -v; } for (int i = 0, carry = 0; i < A.size() or carry; i++) { if (i == A.size()) { A.pb(0); } i64 cur = A[i] * v + carry; carry = cur / BASE; A[i] = cur % BASE; } trim(); } BigInt operator*(i64 v) const { BigInt res = *this; res *= v; return res; } friend pair<BigInt, BigInt> divmod(const BigInt &a1, const BigInt &b1) { i64 norm = BASE / (b1.A.back() + 1); BigInt a = a1.abs() * norm; BigInt b = b1.abs() * norm; BigInt q, r; q.A.resize(a.A.size()); for (int i = int(a.A.size()) - 1; i >= 0; i--) { r *= BASE; r += a.A[i]; i64 s1 = r.A.size() <= b.A.size() ? 0 : r.A[b.A.size()]; i64 s2 = r.A.size() <= b.A.size() - 1 ? 0 : r.A[b.A.size() - 1]; i64 d = (BASE * s1 + s2) / b.A.back(); r -= b * d; while (r < 0) { r += b, d--; } q.A[i] = d; } q.sign = a1.sign * b1.sign; r.sign = a1.sign; q.trim(); r.trim(); return make_pair(q, r / norm); } BigInt operator/(const BigInt &v) const { return divmod(*this, v).first; } BigInt operator%(const BigInt &v) const { return divmod(*this, v).second; } void operator/=(i64 v) { if (v < 0) { sign = -sign, v = -v; } for (int i = int(A.size()) - 1, rem = 0; i >= 0; i--) { i64 cur = A[i] + rem * BASE; A[i] = cur / v; rem = cur % v; } trim(); } BigInt operator/(i64 v) const { BigInt res = *this; res /= v; return res; } i64 operator%(i64 v) const { if (v < 0) v = -v; i64 m = 0; for (int i = int(A.size()) - 1; i >= 0; i--) { m = (A[i] + m * BASE) % v; } return m * sign; } void operator+=(const BigInt &v) { *this = *this + v; } void operator-=(const BigInt &v) { *this = *this - v; } void operator*=(const BigInt &v) { *this = *this * v; } void operator/=(const BigInt &v) { *this = *this / v; } bool operator<(const BigInt &v) const { if (sign != v.sign) { return sign < v.sign; } if (A.size() != v.A.size()) { return A.size() * sign < v.A.size() * sign; } for (int i = int(A.size()) - 1; i >= 0; i--) { if (A[i] != v.A[i]) { return A[i] * sign < v.A[i] * sign; } } return false; } bool operator>(const BigInt &v) const { return v < *this; } bool operator<=(const BigInt &v) const { return !(v < *this); } bool operator>=(const BigInt &v) const { return !(*this < v); } bool operator==(const BigInt &v) const { return !(*this < v) && !(v < *this); } bool operator!=(const BigInt &v) const { return *this < v or v < *this; } void trim() { while (!A.empty() && !A.back()) { A.pop_back(); } if (A.empty()) { sign = 1; } } bool isZero() const { return A.empty() or (A.size() == 1 && !A[0]); } BigInt operator-() const { BigInt res = *this; res.sign = -sign; return res; } BigInt abs() const { BigInt res = *this; res.sign = 1; return res; } i64 i64Value() const { i64 res = 0; for (int i = int(A.size()) - 1; i >= 0; i--) { res = res * BASE + A[i]; } return res * sign; } friend BigInt gcd(const BigInt &a, const BigInt &b) { return b.isZero() ? a : gcd(b, a % b); } friend BigInt lcm(const BigInt &a, const BigInt &b) { return a / gcd(a, b) * b; } void read(const string &s) { sign = 1; A.clear(); int pos = 0; while (pos < s.size() && (s[pos] == '-' or s[pos] == '+')) { if (s[pos] == '-') { sign = -sign; } pos++; } for (int i = int(s.size()) - 1; i >= pos; i -= BASE_DIGITS) { i64 x = 0; for (int j = max(pos, i - BASE_DIGITS + 1); j <= i; j++) { x = x * 10 + s[j] - '0'; } A.pb(x); } trim(); } friend istream& operator>>(istream &stream, BigInt &v) { string s; stream >> s; v.read(s); return stream; } friend ostream& operator<<(ostream &stream, const BigInt &v) { if (v.sign == -1) { stream << '-'; } stream << (v.A.empty() ? 0 : v.A.back()); for (int i = int(v.A.size()) - 2; i >= 0; i--) { stream << setw(BASE_DIGITS) << setfill('0') << v.A[i]; } return stream; } static vector<i64> convert_base(const vector<i64> &a, int old_digits, int new_digits) { vector<i64> p(max(old_digits, new_digits) + 1); p[0] = 1; for (int i = 1; i < p.size(); i++) { p[i] = p[i - 1] * 10; } vector<i64> res; i64 cur = 0; int cur_digits = 0; for (int i = 0; i < a.size(); i++) { cur += a[i] * p[cur_digits]; cur_digits += old_digits; while (cur_digits >= new_digits) { res.pb(cur % p[new_digits]); cur /= p[new_digits]; cur_digits -= new_digits; } } res.pb(cur); while (!res.empty() && !res.back()) { res.pop_back(); } return res; } static vector<i64> karatsuba(const vector<i64> &a, const vector<i64> &b) { int n = a.size(); vector<i64> res(n * 2); if (n <= 32) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { res[i + j] += a[i] * b[j]; } } return res; } int k = n >> 1; vector<i64> a1(a.begin(), a.begin() + k); vector<i64> a2(a.begin() + k, a.end()); vector<i64> b1(b.begin(), b.begin() + k); vector<i64> b2(b.begin() + k, b.end()); vector<i64> a1b1 = karatsuba(a1, b1); vector<i64> a2b2 = karatsuba(a2, b2); for (int i = 0; i < k; i++) { a2[i] += a1[i]; b2[i] += b1[i]; } vector<i64> r = karatsuba(a2, b2); for (int i = 0; i < a1b1.size(); i++) { r[i] -= a1b1[i]; } for (int i = 0; i < a2b2.size(); i++) { r[i] -= a2b2[i]; } for (int i = 0; i < r.size(); i++) { res[i + k] += r[i]; } for (int i = 0; i < a1b1.size(); i++) { res[i] += a1b1[i]; } for (int i = 0; i < a2b2.size(); i++) { res[i + n] += a2b2[i]; } return res; } BigInt karatsubaMultiply(const BigInt &v) const { vector<i64> a = convert_base(this->A, BASE_DIGITS, 6); vector<i64> b = convert_base(v.A, BASE_DIGITS, 6); while (a.size() < b.size()) { a.pb(0); } while (b.size() < a.size()) { b.pb(0); } while (a.size() & (a.size() - 1)) { a.pb(0); b.pb(0); } vector<i64> c = karatsuba(a, b); BigInt res; res.sign = sign * v.sign; for (int i = 0, carry = 0; i < c.size(); i++) { i64 cur = c[i] + carry; res.A.pb(cur % 1000000); carry = cur / 1000000; } res.A = convert_base(res.A, 6, BASE_DIGITS); res.trim(); return res; } static void fft(vector<complex<double>> &a, bool inv = false) { int n = int(a.size()); if (n == 1) return; vector<complex<double>> even(n / 2), odd(n / 2); for (int i = 0; i < n / 2; i++) { even[i] = a[2 * i]; odd[i] = a[2 * i + 1]; } fft(even, inv); fft(odd, inv); complex<double> omega = polar(1.0, (-2 * inv + 1) * 2 * acos(-1) / n); complex<double> pow_omega = 1.0; for (int i = 0; i < n / 2; i++) { a[i] = even[i] + pow_omega * odd[i]; a[i + n / 2] = even[i] - pow_omega * odd[i]; pow_omega *= omega; } } static void conv(vector<complex<double>> &a, vector<complex<double>> &b) { fft(a); fft(b); int n = int(a.size()); for (int i = 0; i < n; i++) { a[i] *= b[i] / complex<double>(n); } fft(a, true); } static vector<i64> conv(const vector<i64> &a, const vector<i64> &b) { int n = max(a.size(), b.size()); int N = 1; while (N <= n) N <<= 1; N <<= 1; vector<complex<double>> ac(N), bc(N); for (int i = 0; i < a.size(); i++) { ac[i] = a[i]; } for (int i = 0; i < b.size(); i++) { bc[i] = b[i]; } conv(ac, bc); vector<i64> ret(ac.size()); for (int i = 0; i < ac.size(); i++) { ret[i] = long(real(ac[i]) + 0.5); } return ret; } BigInt fftMultiply(const BigInt &v) const { vector<i64> a = convert_base(this->A, BASE_DIGITS, 1); vector<i64> b = convert_base(v.A, BASE_DIGITS, 1); vector<i64> c = conv(a, b); BigInt res; res.sign = sign * v.sign; for (int i = 0, carry = 0; i < c.size(); i++) { i64 cur = c[i] + carry; res.A.pb(cur % 10); carry = cur / 10; } res.A = convert_base(res.A, 1, BASE_DIGITS); res.trim(); return res; } BigInt operator*(const BigInt &v) const { if (max(size(), v.size()) < 300000) { return karatsubaMultiply(v); } else { return fftMultiply(v); } } }; signed main() { int T; cin >> T; for (int t = 0; t < T; t++) { BigInt N1, N2; int M; cin >> N1 >> M; N2 = N1; N2 += 1; if (N2 % 2 == 0) N2 /= 2; else N1 /= 2; N1 = N1 % M; N2 = N2 % M; BigInt ans = N1 * N2; ans = ans % M; cout << ans << endl; } }