結果

問題 No.2650 [Cherry 6th Tune *] セイジャク
ユーザー T101010101T101010101
提出日時 2024-03-28 17:53:17
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 23,714 bytes
コンパイル時間 4,913 ms
コンパイル使用メモリ 312,508 KB
実行使用メモリ 142,260 KB
最終ジャッジ日時 2024-09-30 14:47:52
合計ジャッジ時間 15,089 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,496 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 TLE -
testcase_03 AC 1,428 ms
70,876 KB
testcase_04 TLE -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'int round2(int, int)':
main.cpp:114:9: warning: 'z' may be used uninitialized [-Wmaybe-uninitialized]
  114 |     int z = z / y;
      |         ^
main.cpp:114:9: note: 'z' was declared here
  114 |     int z = z / y;
      |         ^

ソースコード

diff #

#pragma region Macros

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2")

#include <bits/extc++.h>
// #include <atcoder/all>
// using namespace atcoder;
using namespace std;
using namespace __gnu_pbds;

// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// using Bint = mp::cpp_int;
// using Bdouble = mp::number<mp::cpp_dec_float<256>>;

#define pb emplace_back
// #define int ll
#define endl '\n'

#define sqrt __builtin_sqrtl
#define cbrt __builtin_cbrtl
#define hypot __builtin_hypotl

// #define y0 y3487465
// #define y1 y8687969
// #define j0 j1347829
// #define j1 j234892
#define next asdnext
#define prev asdprev

using ll = long long;
using ld = long double;
const ld PI = acosl(-1);
const int INF = 1 << 30;
const ll INFL = 1LL << 61;
// const int MOD = 998244353;
const int MOD = 1000000007;

const ld EPS = 1e-10;
const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; }

const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗
const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1};

struct Edge {
    int from, to, cost;
    Edge() : from(-1), to(-1), cost(-1) {}
    Edge(int to, ll cost) : to(to), cost(cost) {}
    Edge(int from, int to, ll cost) : from(from), to(to), cost(cost) {}
};

chrono::system_clock::time_point  start, now;
__attribute__((constructor))
void constructor() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(10);
    start = chrono::system_clock::now();
}

__int128_t POW(__int128_t x, int n) {
    __int128_t ret = 1;
    assert(n >= 0);
    if (x == 1 or n == 0) ret = 1;
    else if (x == -1 && n % 2 == 0) ret = 1; 
    else if (x == -1) ret = -1; 
    else if (n % 2 == 0) {
        assert(x < INFL);
        ret = POW(x * x, n / 2);
    } else {
        assert(x < INFL);
        ret = x * POW(x, n - 1);
    }
    return ret;
}
int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq
    assert(y != 0);
    if (x >= 0 && y > 0) return x / y;
    if (x >= 0 && y < 0) return x / y - (x % y < 0);
    if (x < 0 && y < 0) return x / y + (x % y < 0);
    return x / y - (x % y < 0); //  (x < 0 && y > 0) 
}
int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr
    assert(y != 0);
    if (x >= 0) return x % y;
    __int128_t ret = x % y; // (x < 0)
    ret += (__int128_t)abs(y) * INFL;
    ret %= abs(y);
    return ret;
}
int floor(int x, int y) { // (ld)x / y 以下の最大の整数
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return x >= 0 ? x / y : (x + 1) / y - 1;
}
int ceil(int x, int y) { // (ld)x / y 以上の最小の整数
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return x > 0 ? (x - 1) / y + 1 : x / y;
}
int round(int x, int y) {
    assert(y != 0);
    return (x * 2 + y) / (y * 2);
}
int round(int x, int y, int k) { // (ld)(x/y)を10^kの位に関して四捨五入
    assert(y != 0); // TODO
    return INF;
}
int round2(int x, int y) { // 五捨五超入 // 未verify
    assert(y != 0);
    if (y < 0) y = -y, x = -x;
    int z = z / y;
    if ((z * 2 + 1) * y <= y * 2) z++;
    return z;
}
int floor(ld x, ld y) { // 誤差対策TODO
    assert(!equals(y, 0));
    return floor(x / y);
}
int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい
    assert(!equals(y, 0));
    return ceil(x / y);
}
int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q
    // 未verify. 誤差対策TODO. EPS外してもいいかも。
    assert(!equals(y, 0));
    if (x >= 0 && y > 0) return floor(x / y)+EPS;
    if (x >= 0 && y < 0) return -floor(x / fabs(y));
    if (x < 0 && y < 0) return floor(x / y) + (x - floor(x/y)*y < -EPS);
    return floor(x / y) - (x - floor(x/y)*y < -EPS); //  (x < 0 && y > 0) 
}
ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r
    // 未verify. 誤差対策TODO. -0.0が返りうる。
    assert(!equals(y, 0));
    if (x >= 0) return x - fabs(y)*fabs(per(x, y));
    return x - fabs(y)*floor(x, fabs(y));
}
int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO
int seisuu(int x, int y) {
    assert(y != 0);
    return x / y;
}
int seisuu(ld x, ld y) { // 誤差対策TODO
    assert(!equals(y, 0));
    return (int)(x / y);
}

pair<int, int> max(const pair<int, int> &a, const pair<int, int> &b) {
    if (a.first > b.first or a.first == b.first && a.second > b.second) return a;
    return b;
}
pair<int, int> min(const pair<int, int> &a, const pair<int, int> &b) {
    if (a.first < b.first or a.first == b.first && a.second < b.second) return a;
    return b;
}

template <class T> bool chmax(T &a, const T& b) {
    if (a < b) { a = b; return true; } return false;
}
template <class T> bool chmin(T &a, const T& b) {
    if (a > b) { a = b; return true; } return false;
}
template <class T> T mid(T a, T b, T c) {
    return a + b + c - max({a, b, c}) - min({a, b, c});
}
template <class T> void Sort(T &a, T &b, bool rev = false) {
    if (rev == false) { 
        if (a > b) swap(a, b);
    } else {
        if (b > a) swap(b, a);
    }
}
template <class T> void sort(T &a, T &b, T &c, bool rev = false) {
    if (rev == false) { 
        if (a > b) swap(a, b); if (a > c) swap(a, c); if (b > c) swap(b, c);
    } else {
        if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a);
    }
}
template <class T> void sort(T &a, T &b, T &c, T &d, bool rev = false) {
    if (rev == false) { 
        if (a > b) swap(a, b); if (a > c) swap(a, c);  if (a > d) swap(a, d);
        if (b > c) swap(b, c); if (b > d) swap(b, d); if (c > d) swap(c, d);
    } else {
        if (d > c) swap(d, c); if (d > b) swap(d, b); if (d > a) swap(d, a);
        if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a);
    }
}

int countl_zero(int x) { return __builtin_clzll(x); }
int countl_one(int x) {
    int ret = 0; while (x % 2) { x /= 2; ret++; } return ret;
}
int countr_zero(int x) { return __builtin_ctzll(x); }
int countr_one(int x) {
    int ret = 0, k = 63 - __builtin_clzll(x);
    while (k != -1 && (x & (1LL << k))) { k--; ret++; }
    return ret;
}
int popcount(int x) { return __builtin_popcountll(x); }
int unpopcount(int x) { return 64 - __builtin_clzll(x) - __builtin_popcountll(x); }

int top_bit(int x) { return 63 - __builtin_clzll(x);} // 2^kの位
int bot_bit(int x) { return __builtin_ctz(x);} // 2^kの位
int MSB(int x) { return 1 << (63 - __builtin_clzll(x)); } // mask
int LSB(int x) { return (x & -x); } // mask

int bit_width(int x) { return 64 - __builtin_clzll(x); } // 桁数
int ceil_log2(int x) { return 63 - __builtin_clzll(x); }
int bit_floor(int x) { return 1 << (63 - __builtin_clzll(x)); }
int floor_log2(int x) { return 64 - __builtin_clzll(x-1); }
int bit_ceil(int x) { return 1 << (64 - __builtin_clzll(x-1)) - (x==1); }

int hamming(int a, int b) { return popcount(a ^ b); }
int compcnt(int x) { return (popcount(x^(x >> 1)) + (x&1)) / 2; }

class UnionFind {
public:
	UnionFind() = default;
    UnionFind(int N) : par(N), sz(N, 1) {
        iota(par.begin(), par.end(), 0);
    }
	int root(int x) {
		if (par[x] == x) return x;
		return (par[x] = root(par[x]));
	}
	bool unite(int x, int y) {
		int rx = root(x);
		int ry = root(y);
        if (rx == ry) return false;
		if (sz[rx] < sz[ry]) swap(rx, ry);
		sz[rx] += sz[ry];
		par[ry] = rx;
        return true;
	}
	bool issame(int x, int y) { return (root(x) == root(y)); }
	int size(int x) { return sz[root(x)]; }
    vector<vector<int>> groups(int N) {
        vector<vector<int>> G(N);
        for (int x = 0; x < N; x++) {
            G[root(x)].push_back(x);
        }
		G.erase( remove_if(G.begin(), G.end(),
            [&](const vector<int>& V) { return V.empty(); }), G.end());
        return G;
    }
private:
	vector<int> par, sz;
};

template<typename T>
struct BIT {
    int N;               // 要素数
    vector<T> bit[2];  // データの格納先
    BIT(int N_) { init(N_); }
    void init(int N_) {
        N = N_ + 1;
        bit[0].assign(N, 0); bit[1].assign(N, 0);
    }
    void add_sub(int p, int i, T x) {
        while (i < N) { bit[p][i] += x; i += (i & -i); }
    }
    void add(int l, int r, T x) {
        add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r);
        add_sub(1, l + 1, x); add_sub(1, r + 1, -x);
    }
    void add(int i, T x) { add(i, i + 1, x); }
    T sum_sub(int p, int i) {
        T ret = 0;
        while (i > 0) { ret += bit[p][i]; i -= (i & -i); }
        return ret;
    }
    T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; }
    T sum(int l, int r) { return sum(r) - sum(l); }
    T get(int i) { return sum(i, i + 1); }
    void set(int i, T x) { T s = get(i); add(i, -s + x); }
};

template<int mod> class Modint {
public:
    int val = 0;
    Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }
    Modint(const Modint &r) { val = r.val; }

    Modint operator -() { return Modint(-val); } // 単項
    Modint operator +(const Modint &r) { return Modint(*this) += r; }
    Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }
    Modint operator -(const Modint &r) { return Modint(*this) -= r; }
    Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }
    Modint operator *(const Modint &r) { return Modint(*this) *= r; }
    Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }
    Modint operator /(const Modint &r) { return Modint(*this) /= r; }
    Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }
    
    Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置
    Modint operator ++(signed) { ++*this; return *this; } // 後置
    Modint& operator --() { val--; if (val < 0) val += mod; return *this; }
    Modint operator --(signed) { --*this; return *this; }
    Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator -=(const int &q) { Modint r(q);  if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }
    Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }
    Modint &operator /=(const Modint &r) {
        int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    Modint &operator /=(const int &q) {
        Modint r(q); int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    bool operator ==(const Modint& r) { return this -> val == r.val; }
    bool operator <(const Modint& r) { return this -> val < r.val; }
    bool operator >(const Modint& r) { return this -> val > r.val; }
    bool operator !=(const Modint& r) { return this -> val != r.val; }
};

using mint = Modint<MOD>;
// using Mint = modint998244353;

istream &operator >>(istream &is, mint& x) {
    int t; is >> t; x = t; return (is);
}
ostream &operator <<(ostream &os, const mint& x) {
    return os << x.val;
}
mint modpow(const mint &x, int n) {
    if (n < 0) return (mint)1 / modpow(x, -n); // 未verify
    assert(n >= 0);
    if (n == 0) return 1;
    mint t = modpow(x, n / 2);
    t = t * t;
    if (n & 1) t = t * x;
    return t;
}

int modpow(__int128_t x, int n, int mod) {
    assert(n >= 0 && mod > 0); // TODO: n <= -1
    __int128_t ret = 1;
    while (n > 0) {
        if (n % 2 == 1) ret = ret * x % mod;
        x = x * x % mod;
        n /= 2;
    }
    return ret;
}
int modinv(__int128_t x, int mod) {
    assert(mod > 0 && x > 0);
    if (x == 1) return 1;
    return mod - modinv(mod % x, mod) * (mod / x) % mod;
}

istream &operator >>(istream &is, __int128_t& x) {
    string S; is >> S;
    __int128_t ret = 0;
    int f = 1;
    if (S[0] == '-') f = -1; 
    for (int i = 0; i < S.length(); i++)
        if ('0' <= S[i] && S[i] <= '9')
            ret = ret * 10 + S[i] - '0';
    x = ret * f;
    return (is);
}
ostream &operator <<(ostream &os, __int128_t x) {
    ostream::sentry s(os);
    if (s) {
        __uint128_t tmp = x < 0 ? -x : x;
        char buffer[128]; char *d = end(buffer);
        do {
            --d; *d = "0123456789"[tmp % 10]; tmp /= 10;
        } while (tmp != 0);
        if (x < 0) { --d; *d = '-'; }
        int len = end(buffer) - d;
        if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit);
    }
    return os;
}

__int128_t stoll(string &S) {
    __int128_t ret = 0; int f = 1;
    if (S[0] == '-') f = -1; 
    for (int i = 0; i < S.length(); i++)
        if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0';
    return ret * f;
}
__int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; }
__int128_t lcm(__int128_t a, __int128_t b) {
    return a / gcd(a, b) * b;
    // lcmが__int128_tに収まる必要あり
}

string to_string(ld x, int k) { // xの小数第k位までをstring化する
    assert(k >= 0);
    stringstream ss;
    ss << setprecision(k + 2) << x;
    string s = ss.str();
    if (s.find('.') == string::npos) s += '.';
    int pos = s.find('.');
    for (int i = 0; k >= (int)s.size() - 1 - pos; i++) s += '0';
    s.pop_back();
    if (s.back() == '.') s.pop_back();
    return s;

    // stringstream ss; // 第k+1位を四捨五入して第k位まで返す
    // ss << setprecision(k + 1) << x;
    // string s = ss.str();
    // if (s.find('.') == string::npos) s += '.';
    // int pos = s.find('.');
    // for (int i = 0; k > (int)s.size() - 1 - pos; i++) s += '0';
    // if (s.back() == '.') s.pop_back();
    // return s;
}
string to_string(__int128_t x) {
    string ret = "";
    if (x < 0) { ret += "-"; x *= -1; }
    while (x) { ret += (char)('0' + x % 10); x /= 10; }
    reverse(ret.begin(), ret.end());
    return ret;
}
string to_string(char c) { string s = ""; s += c; return s; }

struct SXor128 {
    uint64_t x = 88172645463325252LL;
    unsigned Int() {
        x = x ^ (x << 7); return x = x ^ (x >> 9);
    }
    unsigned Int(unsigned mod) {
        x = x ^ (x << 7); x = x ^ (x >> 9); return x % mod;
    }
    unsigned Int(unsigned l, unsigned r) {
        x = x ^ (x << 7); x = x ^ (x >> 9); return x % (r - l + 1) + l;
    }
    double Double() {
        return double(Int()) / UINT_MAX;
    }
} rnd;

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<class T> size_t HashCombine(const size_t seed,const T &v) {
    return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2));
}
template<class T,class S> struct hash<pair<T,S>>{
    size_t operator()(const pair<T,S> &keyval) const noexcept {
        return HashCombine(hash<T>()(keyval.first), keyval.second);
    }
};
template<class T> struct hash<vector<T>>{
    size_t operator()(const vector<T> &keyval) const noexcept {
        size_t s=0;
        for (auto&& v: keyval) s=HashCombine(s,v);
        return s;
    }
};
template<int N> struct HashTupleCore{
    template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{
        size_t s=HashTupleCore<N-1>()(keyval);
        return HashCombine(s,get<N-1>(keyval));
    }
};
template <> struct HashTupleCore<0>{
    template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; }
};
template<class... Args> struct hash<tuple<Args...>>{
    size_t operator()(const tuple<Args...> &keyval) const noexcept {
        return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval);
    }
};

vector<mint> _fac, _finv, _inv;
void COMinit(int N) {
    _fac.resize(N + 1); _finv.resize(N + 1);  _inv.resize(N + 1);
    _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1;
    for (int i = 2; i <= N; i++) {
        _fac[i] = _fac[i-1] * mint(i);
        _inv[i] = -_inv[MOD % i] * mint(MOD / i);
        _finv[i] = _finv[i - 1] * _inv[i];
    }
}

mint FAC(int N) {
    if (N < 0) return 0; return _fac[N];
}
mint COM(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _fac[N] * _finv[K] * _finv[N - K];
}
mint PERM(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _fac[N] *  _finv[N - K];
}
mint NHK(int N, int K) {
    if (N == 0 && K == 0)  return 1;
    return COM(N + K - 1, K);
}

#pragma endregion

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {
public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int ma) : ma(ma) {
        size = (int)bit_ceil((unsigned int)(ma));
        log = countr_zero((unsigned int)size);
    }

    void set(int p, S x) {
        assert(0 <= p && p < ma);
        if (x == e()) {
            d.erase(p);
            return ;
        }
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < ma);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        if (d.find(p) == d.end()) return e();
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= ma);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) {
                if (d.find(l) == d.end()) {
                    sml = op(sml, e());
                    l++;
                } else {
                    sml = op(sml, d[l++]);
                }
            }
            if (r & 1) {
                if (d.find(r - 1) == d.end()) { // r?
                    r--;
                    smr = op(e(), smr);
                } else {
                    smr = op(d[--r], smr);
                }
            }
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() {
        if (d.find(1) == d.end()) return e();
        return d[1];
    }

    void apply(int p, F f) {
        assert(0 <= p && p < ma);
        if (f == id()) return ;
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        if (d.find(p) == d.end()) d[p] = e();
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= ma);
        if (l == r) return;
        if (f == id()) return ;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= ma);
        assert(g(e()));
        if (l == ma) return ma;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (d.find(l) == d.end()) d[l] = e();
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (d.find(l) == d.end()) d[l] = e();
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            if (d.find(l) == d.end()) d[l] = e();
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return ma;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= ma);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (d.find(r) == d.end()) d[r] = e();
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (d.find(r) == d.end()) d[r] = e();
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            if (d.find(r) == d.end()) d[r] = e();
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

private:
    int ma, size, log;
    unordered_map<int, S> d;
    unordered_map<int, F> lz;

    void update(int k) {
        if (d.find(2 * k) == d.end()) d[2 * k] = e();
        if (d.find(2 * k + 1) == d.end()) d[2 * k + 1] = e();
        d[k] = op(d[2 * k], d[2 * k + 1]);
        // if (d[2 * k] == e()) d.erase(2 * k);
        // if (d[2 * k + 1] == e()) d.erase(2 * k + 1);
    }
    void all_apply(int k, F f) {
        if (d.find(k) == d.end()) d[k] = e();
        d[k] = mapping(f, d[k]);
        if (k < size) {
            if (lz.find(k) == lz.end()) lz[k] = id();
            lz[k] = composition(f, lz[k]);
        }
    }
    void push(int k) {
        if (lz.find(k) == lz.end()) {
            all_apply(2 * k, id());
            all_apply(2 * k + 1, id());
        } else {
            all_apply(2 * k, lz[k]);
            all_apply(2 * k + 1, lz[k]);
        }
        lz.erase(k);
    }
};

using S = long long;
using F = long long;

const F ID = -1;

S op(S a, S b) { return min(a, b); }
S e() { return -1; }
S mapping(F f, S x) { return (f == ID ? x : f); }
F composition(F f, F g) { return (f == ID ? g : f); }
F id() { return ID; }

signed main() {
    int N, A;
    cin >> N >> A;
    vector<int> X(N);
    for (int i = 0; i < N; i++) cin >> X[i];

    lazy_segtree<S, op, e, F, mapping, composition, id> seg(1e9+1);

    int T;
    cin >> T;
    for (int t = 0; t < T; t++) {
        int l, r;
        cin >> l >> r;
        seg.apply(l, r + 1, t + 1);
    }

    for (int i = 0; i < N; i++) {
        cout << seg.get(X[i]) << endl;
    }
}
0