結果

問題 No.2156 ぞい文字列
ユーザー 👑 seekworserseekworser
提出日時 2024-03-28 20:26:16
言語 Nim
(2.2.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 19,030 bytes
コンパイル時間 3,544 ms
コンパイル使用メモリ 71,400 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-09-30 14:50:39
合計ジャッジ時間 3,775 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 1 ms
5,248 KB
testcase_07 AC 1 ms
5,248 KB
testcase_08 AC 1 ms
5,248 KB
testcase_09 AC 1 ms
5,248 KB
testcase_10 AC 1 ms
5,248 KB
testcase_11 AC 1 ms
5,248 KB
testcase_12 AC 1 ms
5,248 KB
testcase_13 AC 1 ms
5,248 KB
testcase_14 AC 1 ms
5,248 KB
testcase_15 AC 1 ms
5,248 KB
testcase_16 AC 1 ms
5,248 KB
testcase_17 AC 1 ms
5,248 KB
testcase_18 AC 1 ms
5,248 KB
testcase_19 AC 1 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# verification-helper: PROBLEM https://atcoder.jp/contests/dp/tasks/dp_r
ImportExpand "cplib/matrix/matrix.nim" <=== "when not declared CPLIB_MATRIX_MATRIX:\n    const CPLIB_MATRIX_MATRIX* = 1\n    import sequtils\n    import strutils\n    import hashes\n    import std/math\n    type Matrix*[T] = object\n        arr: seq[seq[T]]\n    proc initMatrix*[T](arr: seq[seq[T]]): Matrix[T] =\n        assert arr.len == 0 or arr.mapIt(it.len).allIt(it == arr[0].len), \"all elements in arr must be the same size.\"\n        Matrix[T](arr: arr)\n    proc toMatrix*[T](arr: seq[seq[T]]): Matrix[T] = initMatrix(arr)\n    proc initMatrix*[T](arr: seq[T], vertical: bool = false): Matrix[T] =\n        if vertical: Matrix[T](arr: arr.mapIt(@[it]))\n        else: Matrix[T](arr: @[arr])\n    proc initMatrix*[T](h, w: int, val: T): Matrix[T] = Matrix[T](arr: newSeqWith(h, newSeqWith(w, val)))\n\n    proc h*[T](m: Matrix[T]): int = m.arr.len\n    proc w*[T](m: Matrix[T]): int =\n        if m.h == 0: return 0\n        m.arr[0].len\n    proc `$`*[T](m: Matrix[T]): string =\n        for i in 0..<m.arr.len:\n            result &= m.arr[i].mapIt($it).join(\" \")\n            if i != m.arr.len - 1: result &= \"\\n\"\n    proc `==`*[T](a, b: Matrix[T]): bool = a.arr == b.arr\n    proc `[]`*[T](m: Matrix[T], r: int): seq[T] = m.arr[r]\n    proc `[]`*[T](m: var Matrix[T], r: int): var seq[T] = m.arr[r]\n    proc `[]=`*[T](m: var Matrix[T], r: int, row: seq[T]) = m.arr[r] = row\n\n    proc `[]`*[T](m: Matrix[T], r: int, c: int): T = m.arr[r][c]\n    proc `[]`*[T](m: var Matrix[T], r: int, c: int): var T = m.arr[r][c]\n    proc `[]=`*[T](m: var Matrix[T], r: int, c: int, val: T) = m.arr[r][c] = val\n\n    proc `-`*[T](m: Matrix[T]): Matrix[T] = Matrix[T](arr: m.arr.mapIt(it.mapIt(-it)))\n    proc `@=`*[T](a: var Matrix[T], b: Matrix[T]) =\n        assert a.w == b.h\n        var ans = initMatrix[T](a.h, b.w, 0)\n        for i in 0..<a.h:\n            for j in 0..<b.w:\n                for k in 0..<a.w:\n                    ans[i, j] += a[i, k] * b[k, j]\n        swap(ans, a)\n    proc `@`*[T](a, b: Matrix[T]): Matrix[T] = (result = a; result @= b)\n    template defineMatrixAssignmentOp(assign, op: untyped) =\n        proc assign*[T](a: var Matrix[T], b: Matrix[T]) =\n            assert a.h == b.h and a.w == b.w\n            for i in 0..<a.h:\n                for j in 0..<a.w:\n                    assign(a[i, j], b[i, j])\n        proc assign*[T](a: var Matrix[T], x: T) =\n            for i in 0..<a.h:\n                for j in 0..<a.w:\n                    assign(a[i, j], x)\n        proc op*[T](a, b: Matrix[T]): Matrix[T] = (result = a; assign(result, b))\n        proc op*[T](a: Matrix[T], x: T): Matrix[T] = (result = a; assign(result, x))\n        proc op*[T](x: T, a: Matrix[T]): Matrix[T] = op(a, x)\n    defineMatrixAssignmentOp(`+=`, `+`)\n    defineMatrixAssignmentOp(`-=`, `-`)\n    defineMatrixAssignmentOp(`*=`, `*`)\n    defineMatrixAssignmentOp(`/=`, `/`)\n\n    template defineMatrixIntOps(assign, op: untyped) =\n        proc assign*(a: var Matrix[int], b: Matrix[int]) =\n            assert a.h == b.h and a.w == b.w\n            for i in 0..<a.h:\n                for j in 0..<a.w:\n                    a[i, j] = op(a[i, j], b[i, j])\n        proc assign*(a: var Matrix[int], x: int) =\n            for i in 0..<a.h:\n                for j in 0..<a.w:\n                    a[i, j] = op(a[i, j], x)\n        proc op*(a, b: Matrix[int]): Matrix[int] = (result = a; assign(result, b))\n        proc op*(a: Matrix[int], x: int): Matrix[int] = (result = a; assign(result, x))\n        proc op*(x: int, a: Matrix[int]): Matrix[int] = op(a, x)\n    defineMatrixIntOps(`and=`, `and`)\n    defineMatrixIntOps(`or=`, `or`)\n    defineMatrixIntOps(`xor=`, `xor`)\n    defineMatrixIntOps(`shl=`, `shl`)\n    defineMatrixIntOps(`shr=`, `shr`)\n    defineMatrixIntOps(`div=`, `div`)\n    defineMatrixIntOps(`mod=`, `mod`)\n\n    proc hash*[T](m: Matrix[T]): Hash = hash(m.arr)\n    proc identity_matrix*[T](n: int, one, zero: T): Matrix[T] =\n        result = initMatrix[T](n, n, zero)\n        for i in 0..<n: result[i][i] = one\n    proc identity_matrix*[T](n: int): Matrix[T] = identity_matrix[T](n, 1, 0)\n    proc pow*[T](m: Matrix[T], n: int): Matrix[T] =\n        result = identity_matrix[T](m.h)\n        var m = m\n        var n = n\n        while n > 0:\n            if (n and 1) == 1: result @= m\n            m @= m\n            n = n shr 1\n    proc sum*[T](m: Matrix[T]): T = m.arr.mapit(it.sum).sum\n"
proc scanf(formatstr: cstring){.header: "<stdio.h>", varargs.}
proc ii(): int {.inline.} = scanf("%lld\n", addr result)
ImportExpand "atcoder/modint.nim" <=== "when not declared ATCODER_MODINT_HPP:\n  const ATCODER_MODINT_HPP* = 1\n  import std/macros\n  #[ import atcoder/generate_definitions ]#\n  when not declared ATCODER_GENERATE_DEFINITIONS_NIM:\n    const ATCODER_GENERATE_DEFINITIONS_NIM* = 1\n    import std/macros\n  \n    type hasInv* = concept x\n      x.inv()\n  \n    template generateDefinitions*(name, l, r, typeObj, typeBase, body: untyped): untyped {.dirty.} =\n      proc name*(l, r: typeObj): auto {.inline.} =\n        type T = l.type\n        body\n      proc name*(l: typeBase; r: typeObj): auto {.inline.} =\n        type T = r.type\n        body\n      proc name*(l: typeObj; r: typeBase): auto {.inline.} =\n        type T = l.type\n        body\n  \n    template generatePow*(name) {.dirty.} =\n      proc pow*(m: name; p: SomeInteger): name {.inline.} =\n        when name is hasInv:\n          if p < 0: return pow(m.inv(), -p)\n        else:\n          doAssert p >= 0\n        if (p.type)(0) <= p:\n          var\n            p = p.uint\n            m = m\n          result = m.unit()\n          while p > 0'u:\n            if (p and 1'u) != 0'u: result *= m\n            m *= m\n            p = p shr 1'u\n      proc `^`*[T:name](m: T; p: SomeInteger): T {.inline.} = m.pow(p)\n  \n    macro generateConverter*(name, from_type, to_type) =\n      let fname = ident(\"to\" & $`name` & \"OfGenerateConverter\")\n      quote do:\n        type `name`* = `to_type`\n        converter `fname`*(a:`from_type`):`name` {.used.} =\n          `name`.init(a)\n\n  type\n    StaticModInt*[M: static[int]] = object\n      a:uint32\n    DynamicModInt*[T: static[int]] = object\n      a:uint32\n\n  type ModInt* = StaticModInt or DynamicModInt\n#  type ModInt* = concept x, type T\n#    T is StaticModInt or T is DynamicModInt\n\n  proc isStaticModInt*(T:typedesc[ModInt]):bool = T is StaticModInt\n  proc isDynamicModInt*(T:typedesc[ModInt]):bool = T is DynamicModInt\n  #proc isModInt*(T:typedesc):bool = T.isStaticModInt or T.isDynamicModInt\n  proc isStatic*(T:typedesc[ModInt]):bool = T is StaticModInt\n  proc getMod*[M:static[int]](t:typedesc[StaticModInt[M]]):int {.inline.} = M\n\n\n  #[ import atcoder/internal_math ]#\n  when not declared ATCODER_INTERNAL_MATH_HPP:\n    const ATCODER_INTERNAL_MATH_HPP* = 1\n    import std/math\n  \n    # Fast moduler by barrett reduction\n    # Reference: https:#en.wikipedia.org/wiki/Barrett_reduction\n    # NOTE: reconsider after Ice Lake\n    type Barrett* = object\n      m*, im*:uint\n  \n    # @param m `1 <= m`\n    proc initBarrett*(m:uint):auto = Barrett(m:m, im:cast[uint](-1) div m + 1)\n  \n    # @return m\n    proc umod*(self: Barrett):uint =\n      self.m\n  \n    {.emit: \"\"\"\n  #include<cstdio>\n  inline unsigned long long calc_mul(const unsigned long long &a, const unsigned long long &b){\n    return (unsigned long long)(((unsigned __int128)(a)*b) >> 64);\n  }\n  \"\"\".}\n    proc calc_mul*(a,b:culonglong):culonglong {.importcpp: \"calc_mul(#,#)\", nodecl, inline.}\n    # @param a `0 <= a < m`\n    # @param b `0 <= b < m`\n    # @return `a * b % m`\n    proc quo*(self: Barrett, n:int | uint):int =\n      let n = n.uint\n      let x = calc_mul(n.culonglong, self.im.culonglong).uint\n      let r = n - x * self.m\n      return int(if self.m <= r: x - 1 else: x)\n    proc rem*(self: Barrett, n:int | uint):int =\n      let n = n.uint\n      let x = calc_mul(n.culonglong, self.im.culonglong).uint\n      let r = n - x * self.m\n      return int(if self.m <= r: r + self.m else: r)\n    proc quorem*(self: Barrett, n:int | uint):(int, int) =\n      let n = n.uint\n      let x = calc_mul(n.culonglong, self.im.culonglong).uint\n      let r = n - x * self.m\n      return if self.m <= r: (int(x - 1), int(r + self.m)) else: (int(x), int(r))\n  \n    proc pow*(self: Barrett, n:uint | int, p:int):int =\n      var\n        a = self.rem(n)\n        r:uint = if self.m == 1: 0 else: 1\n        p = p\n      while p > 0:\n        if (p and 1) != 0: r = self.mul(r, a.uint)\n        a = self.mul(a.uint, a.uint).int\n        p = p shr 1\n      return int(r)\n  \n    proc mul*(self: Barrett, a:uint, b:uint):uint {.inline.} =\n      # [1] m = 1\n      # a = b = im = 0, so okay\n  \n      # [2] m >= 2\n      # im = ceil(2^64 / m)\n      # -> im * m = 2^64 + r (0 <= r < m)\n      # let z = a*b = c*m + d (0 <= c, d < m)\n      # a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im\n      # c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2\n      # ((ab * im) >> 64) == c or c + 1\n      let z = a * b\n      #  #ifdef _MSC_VER\n      #      unsigned long long x;\n      #      _umul128(z, im, &x);\n      #  #else\n      ##TODO\n      #      unsigned long long x =\n      #        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);\n      #  #endif\n      #let x = calc_mul(z.culonglong, self.im.culonglong).uint\n      #result = z - x * self.m\n      #if self.m <= result: result += self.m\n      return self.rem(z).uint\n  \n    # @param n `0 <= n`\n    # @param m `1 <= m`\n    # @return `(x ** n) % m`\n    proc pow_mod_constexpr*(x, n, m:int):int =\n      if m == 1: return 0\n      var\n        r = 1\n        y = floorMod(x, m)\n        n = n\n      while n != 0:\n        if (n and 1) != 0: r = (r * y) mod m\n        y = (y * y) mod m\n        n = n shr 1\n      return r.int\n    \n    # Reference:\n    # M. Forisek and J. Jancina,\n    # Fast Primality Testing for Integers That Fit into a Machine Word\n    # @param n `0 <= n`\n    proc is_prime_constexpr*(n:int):bool =\n      if n <= 1: return false\n      if n == 2 or n == 7 or n == 61: return true\n      if n mod 2 == 0: return false\n      var d = n - 1\n      while d mod 2 == 0: d = d div 2\n      for a in [2, 7, 61]:\n        var\n          t = d\n          y = pow_mod_constexpr(a, t, n)\n        while t != n - 1 and y != 1 and y != n - 1:\n          y = y * y mod n\n          t =  t shl 1\n        if y != n - 1 and t mod 2 == 0:\n          return false\n      return true\n    proc is_prime*[n:static[int]]():bool = is_prime_constexpr(n)\n  #  \n  #  # @param b `1 <= b`\n  #  # @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g\n    proc inv_gcd*(a, b:int):(int,int) =\n      var a = floorMod(a, b)\n      if a == 0: return (b, 0)\n    \n      # Contracts:\n      # [1] s - m0 * a = 0 (mod b)\n      # [2] t - m1 * a = 0 (mod b)\n      # [3] s * |m1| + t * |m0| <= b\n      var\n        s = b\n        t = a\n        m0 = 0\n        m1 = 1\n    \n      while t != 0:\n        var u = s div t\n        s -= t * u;\n        m0 -= m1 * u;  # |m1 * u| <= |m1| * s <= b\n    \n        # [3]:\n        # (s - t * u) * |m1| + t * |m0 - m1 * u|\n        # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)\n        # = s * |m1| + t * |m0| <= b\n    \n        var tmp = s\n        s = t;t = tmp;\n        tmp = m0;m0 = m1;m1 = tmp;\n      # by [3]: |m0| <= b/g\n      # by g != b: |m0| < b/g\n      if m0 < 0: m0 += b div s\n      return (s, m0)\n  \n    # Compile time primitive root\n    # @param m must be prime\n    # @return primitive root (and minimum in now)\n    proc primitive_root_constexpr*(m:int):int =\n      if m == 2: return 1\n      if m == 167772161: return 3\n      if m == 469762049: return 3\n      if m == 754974721: return 11\n      if m == 998244353: return 3\n      var divs:array[20, int]\n      divs[0] = 2\n      var cnt = 1\n      var x = (m - 1) div 2\n      while x mod 2 == 0: x = x div 2\n      var i = 3\n      while i * i <= x:\n        if x mod i == 0:\n          divs[cnt] = i\n          cnt.inc\n          while x mod i == 0:\n            x = x div i\n        i += 2\n      if x > 1:\n        divs[cnt] = x\n        cnt.inc\n      var g = 2\n      while true:\n        var ok = true\n        for i in 0..<cnt:\n          if pow_mod_constexpr(g, (m - 1) div divs[i], m) == 1:\n            ok = false\n            break\n        if ok: return g\n        g.inc\n    proc primitive_root*[m:static[int]]():auto =\n      primitive_root_constexpr(m)\n  \n    # @param n `n < 2^32`\n    # @param m `1 <= m < 2^32`\n    # @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)\n    proc floor_sum_unsigned*(n, m, a, b:uint):uint =\n      result = 0\n      var (n, m, a, b) = (n, m, a, b)\n      while true:\n        if a >= m:\n          result += n * (n - 1) div 2 * (a div m)\n          a = a mod m\n        if b >= m:\n          result += n * (b div m)\n          b = b mod m\n  \n        let y_max = a * n + b\n        if y_max < m: break\n        # y_max < m * (n + 1)\n        # floor(y_max / m) <= n\n        n = y_max div m\n        b = y_max mod m\n        swap(m, a)\n\n  proc getBarrett*[T:static[int]](t:typedesc[DynamicModInt[T]]):ptr Barrett =\n    var Barrett_of_DynamicModInt {.global.} = initBarrett(998244353.uint)\n    return Barrett_of_DynamicModInt.addr\n  \n  proc getMod*[T:static[int]](t:typedesc[DynamicModInt[T]]):uint32 {.inline.} =\n    (t.getBarrett)[].m.uint32\n  proc setMod*[T:static[int]](t:typedesc[DynamicModInt[T]], M:SomeInteger){.inline.} =\n    (t.getBarrett)[] = initBarrett(M.uint)\n\n  proc val*(m: ModInt): int {.inline.} = int(m.a)\n\n  proc `$`*(m: StaticModInt or DynamicModInt): string {.inline.} = $(m.val())\n\n  template umod*[T:ModInt](self: typedesc[T] or T):uint32 =\n    when T is typedesc:\n      when T is StaticModInt:\n        T.M.uint32\n      elif T is DynamicModInt:\n        T.getMod()\n      else:\n        static: assert false\n    else: T.umod\n\n  template `mod`*[T:ModInt](self:typedesc[T] or T):int = T.umod.int\n\n  proc init*[T:ModInt](t:typedesc[T], v: SomeInteger or T): auto {.inline.} =\n    when v is T: return v\n    else:\n      when v is SomeUnsignedInt:\n        if v.uint < T.umod:\n          return T(a:v.uint32)\n        else:\n          return T(a:(v.uint mod T.umod.uint).uint32)\n      else:\n        var v = v.int\n        if 0 <= v:\n          if v < T.mod: return T(a:v.uint32)\n          else: return T(a:(v mod T.mod).uint32)\n        else:\n          v = v mod T.mod\n          if v < 0: v += T.mod\n          return T(a:v.uint32)\n  proc unit*[T:ModInt](t:typedesc[T] or T):T = T.init(1)\n\n  template initModInt*(v: SomeInteger or ModInt; M: static[int] = 1_000_000_007): auto =\n    StaticModInt[M].init(v)\n\n# TODO\n#  converter toModInt[M:static[int]](n:SomeInteger):StaticModInt[M] {.inline.} = initModInt(n, M)\n\n#  proc initModIntRaw*(v: SomeInteger; M: static[int] = 1_000_000_007): auto {.inline.} =\n#    ModInt[M](v.uint32)\n  proc raw*[T:ModInt](t:typedesc[T], v:SomeInteger):auto = T(a:v)\n\n  proc inv*[T:ModInt](v:T):T {.inline.} =\n    var\n      a = v.a.int\n      b = T.mod\n      u = 1\n      v = 0\n    while b > 0:\n      let t = a div b\n      a -= t * b;swap(a, b)\n      u -= t * v;swap(u, v)\n    return T.init(u)\n\n\n  proc `-`*[T:ModInt](m: T): T {.inline.} =\n    if int(m.a) == 0: return m\n    else: return T(a:m.umod() - m.a)\n\n  proc `+=`*[T:ModInt](m: var T; n: SomeInteger | T):T {.inline discardable.} =\n    m.a += T.init(n).a\n    if m.a >= T.umod: m.a -= T.umod\n    return m\n\n  proc `-=`*[T:ModInt](m: var T; n: SomeInteger | T):T {.inline discardable.} =\n    m.a -= T.init(n).a\n    if m.a >= T.umod: m.a += T.umod\n    return m\n\n  proc `*=`*[T:ModInt](m: var T; n: SomeInteger | T):T {.inline discardable.} =\n    when T is StaticModInt:\n      m.a = (m.a.uint * T.init(n).a.uint mod T.umod).uint32\n    elif T is DynamicModInt:\n      m.a = T.getBarrett[].mul(m.a.uint, T.init(n).a.uint).uint32\n    else:\n      static: assert false\n    return m\n\n  proc `/=`*[T:ModInt](m: var T; n: SomeInteger | T):T {.inline discardable.} =\n    m.a = (m.a.uint * T.init(n).inv().a.uint mod T.umod).uint32\n    return m\n\n  generateDefinitions(`+`, m, n, ModInt, SomeInteger):\n    result = T.init(m)\n    result += n\n\n  generateDefinitions(`-`, m, n, ModInt, SomeInteger):\n    result = T.init(m)\n    result -= n\n\n  generateDefinitions(`*`, m, n, ModInt, SomeInteger):\n    result = T.init(m)\n    result *= n\n\n  generateDefinitions(`/`, m, n, ModInt, SomeInteger):\n    result = T.init(m)\n    result /= n\n\n  generateDefinitions(`==`, m, n, ModInt, SomeInteger):\n    result = (T.init(m).val() == T.init(n).val())\n\n  proc inc*(m: var ModInt):ModInt {.inline discardable.} =\n    m.a.inc\n    if m.a == m.umod.uint32:\n      m.a = 0\n    return m\n  proc `++`*(m: var ModInt):ModInt {.inline discardable.} = m.inc\n\n  proc dec*(m: var ModInt):ModInt {.inline discardable.} =\n    if m.a == 0.uint32:\n      m.a = m.umod - 1\n    else:\n      m.a.dec\n    return m\n  proc `--`*(m: var ModInt):ModInt {.inline discardable.} = m.dec\n\n  generatePow(ModInt)\n  \n  # TODO: intのところはSomeIntegerに拡張したいがそうするとSystem.nimのuintのconverterとバッティングする。。。\n  template useStaticModint*(name, M) =\n    generateConverter(name, int, StaticModInt[M])\n  template useDynamicModInt*(name, M) =\n    generateConverter(name, int, DynamicModInt[M])\n\n  # TODO: Nimのstatic[int]を使うconverterがバグっていて個々に宣言しないとconverterが使えない\n  # したがって、下記以外のmodintを使う場合はuseStaticModIntあるいはuseDynamicModIntで宣言が必要\n  useStaticModInt(modint998244353, 998244353)\n  useStaticModInt(modint1000000007, 1000000007)\n  useDynamicModInt(modint, -1)\n\n  import std/math as math_lib_modint\n  proc estimateRational*(a:ModInt, ub:int = int(sqrt(float(ModInt.mod))), output_stderr:static[bool] = false):string =\n    var v:seq[tuple[s, n, d: int]]\n    for d in 1 .. ub:\n      var n = (a * d).val\n      # n or mod - n\n      if n * 2 > a.mod:\n        n = - (a.mod - n)\n      if gcd(n, d) > 1: continue\n      v.add((n.abs + d, n, d))\n    v.sort\n    when output_stderr:\n      stderr.write \"estimation result: \", v\n    return $v[0].n & \"/\" & $v[0].d\n\n  # TODO:\n  # Modint -> intのconverterあるとmint(2) * 3みたいなのがintになっちゃう\n  # converter toInt*(m: ModInt):int {.inline.} = m.val\n\n\n"
type mint = modint998244353

var n = ii()
var a = @[@[mint(1), mint(1)], @[mint(1), mint(0)]].toMatrix
var ans = initMatrix(@[mint(1), mint(0)], true)
ans = a.pow(n) @ ans
echo ans[0, 0] - 1
0