結果
問題 | No.8113 How Many Liars Are There? |
ユーザー |
👑 |
提出日時 | 2024-03-29 16:23:31 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,263 ms / 2,000 ms |
コード長 | 3,956 bytes |
コンパイル時間 | 139 ms |
コンパイル使用メモリ | 82,072 KB |
実行使用メモリ | 96,400 KB |
最終ジャッジ日時 | 2024-10-03 05:18:01 |
合計ジャッジ時間 | 23,821 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 60 |
ソースコード
import typingclass DSU:'''Implement (union by size) + (path halving)Reference:Zvi Galil and Giuseppe F. Italiano,Data structures and algorithms for disjoint set union problems'''def __init__(self, n: int = 0) -> None:self._n = nself.parent_or_size = [-1] * ndef merge(self, a: int, b: int) -> int:assert 0 <= a < self._nassert 0 <= b < self._nx = self.leader(a)y = self.leader(b)if x == y:return xif -self.parent_or_size[x] < -self.parent_or_size[y]:x, y = y, xself.parent_or_size[x] += self.parent_or_size[y]self.parent_or_size[y] = xreturn xdef same(self, a: int, b: int) -> bool:assert 0 <= a < self._nassert 0 <= b < self._nreturn self.leader(a) == self.leader(b)def leader(self, a: int) -> int:assert 0 <= a < self._nparent = self.parent_or_size[a]while parent >= 0:if self.parent_or_size[parent] < 0:return parentself.parent_or_size[a], a, parent = (self.parent_or_size[parent],self.parent_or_size[parent],self.parent_or_size[self.parent_or_size[parent]])return adef size(self, a: int) -> int:assert 0 <= a < self._nreturn -self.parent_or_size[self.leader(a)]def groups(self) -> typing.List[typing.List[int]]:leader_buf = [self.leader(i) for i in range(self._n)]result: typing.List[typing.List[int]] = [[] for _ in range(self._n)]for i in range(self._n):result[leader_buf[i]].append(i)return list(filter(lambda r: r, result))from collections import dequen,k=map(int, input().split())p=list(map(lambda x: int(x)-1, input().split()))a=list(map(int, input().split()))indeg=[0]*nuf=DSU(n)is_root=[False]*nis_root_next=[False]*nfor v in range(n):if uf.same(v, p[v]):is_root[v]=Trueis_root_next[p[v]]=Trueelse:indeg[p[v]]+=1uf.merge(v, p[v])ans=[False]*(2*n+1)dp=[[0 for _ in range(2*n+1)] for _ in range(n)]size=[1]*nans_size=0groups=uf.groups()ans[0]=Truefor group in groups:queue=deque()for v in group:if indeg[v]==0:queue.appendleft(v)for c_v in [0,1]:for c_p in [0,1]:for c_s in [0,1]:dp[v][c_v+(a[v]+c_v+c_p)%2]|=1<<(4*c_v+2*c_p+c_s)while len(queue)>0:v=queue.pop()if is_root[v]:dp_p=[False]*(2*(size[v]+ans_size)+1)for i in range(2*size[v]+1):for c_v in [0,1]:for c_p in [0,1]:for j in range(2*ans_size+1):dp_p[i+j]|=(dp[v][i]>>(4*c_v+3*c_p))&ans[j]&1ans_size+=size[v]for i in range(2*ans_size+1):ans[i]=dp_p[i]else:dp_p=[0 for _ in range(2*(size[v]+size[p[v]])+1)]for i in range(2*size[v]+1):for c_v in [0,1]:for c_p in [0,1]:for c_pp in [0,1]:for j in range(2*size[p[v]]+1):if is_root_next[v]:dp_p[i+j]|=((dp[v][i]>>(5*c_v+2*c_p))&(dp[p[v]][j]>>(4*c_p+2*c_pp+c_v))&1)<<(4*c_p+2*c_pp+c_v)else:for c_s in [0,1]:dp_p[i+j]|=((dp[v][i]>>(4*c_v+2*c_p+c_s))&(dp[p[v]][j]>>(4*c_p+2*c_pp+c_s))&1)<<(4*c_p+2*c_pp+c_s)size[p[v]]+=size[v]for i in range(2*size[p[v]]+1):dp[p[v]][i]=dp_p[i]indeg[p[v]]-=1if indeg[p[v]]==0:queue.appendleft(p[v])print("Yes" if ans[k] else "No")