結果

問題 No.8113 How Many Liars Are There?
ユーザー 👑 獅子座じゃない人
提出日時 2024-03-29 16:23:31
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,263 ms / 2,000 ms
コード長 3,956 bytes
コンパイル時間 139 ms
コンパイル使用メモリ 82,072 KB
実行使用メモリ 96,400 KB
最終ジャッジ日時 2024-10-03 05:18:01
合計ジャッジ時間 23,821 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 60
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import typing
class DSU:
'''
Implement (union by size) + (path halving)
Reference:
Zvi Galil and Giuseppe F. Italiano,
Data structures and algorithms for disjoint set union problems
'''
def __init__(self, n: int = 0) -> None:
self._n = n
self.parent_or_size = [-1] * n
def merge(self, a: int, b: int) -> int:
assert 0 <= a < self._n
assert 0 <= b < self._n
x = self.leader(a)
y = self.leader(b)
if x == y:
return x
if -self.parent_or_size[x] < -self.parent_or_size[y]:
x, y = y, x
self.parent_or_size[x] += self.parent_or_size[y]
self.parent_or_size[y] = x
return x
def same(self, a: int, b: int) -> bool:
assert 0 <= a < self._n
assert 0 <= b < self._n
return self.leader(a) == self.leader(b)
def leader(self, a: int) -> int:
assert 0 <= a < self._n
parent = self.parent_or_size[a]
while parent >= 0:
if self.parent_or_size[parent] < 0:
return parent
self.parent_or_size[a], a, parent = (
self.parent_or_size[parent],
self.parent_or_size[parent],
self.parent_or_size[self.parent_or_size[parent]]
)
return a
def size(self, a: int) -> int:
assert 0 <= a < self._n
return -self.parent_or_size[self.leader(a)]
def groups(self) -> typing.List[typing.List[int]]:
leader_buf = [self.leader(i) for i in range(self._n)]
result: typing.List[typing.List[int]] = [[] for _ in range(self._n)]
for i in range(self._n):
result[leader_buf[i]].append(i)
return list(filter(lambda r: r, result))
from collections import deque
n,k=map(int, input().split())
p=list(map(lambda x: int(x)-1, input().split()))
a=list(map(int, input().split()))
indeg=[0]*n
uf=DSU(n)
is_root=[False]*n
is_root_next=[False]*n
for v in range(n):
if uf.same(v, p[v]):
is_root[v]=True
is_root_next[p[v]]=True
else:
indeg[p[v]]+=1
uf.merge(v, p[v])
ans=[False]*(2*n+1)
dp=[[0 for _ in range(2*n+1)] for _ in range(n)]
size=[1]*n
ans_size=0
groups=uf.groups()
ans[0]=True
for group in groups:
queue=deque()
for v in group:
if indeg[v]==0:
queue.appendleft(v)
for c_v in [0,1]:
for c_p in [0,1]:
for c_s in [0,1]:
dp[v][c_v+(a[v]+c_v+c_p)%2]|=1<<(4*c_v+2*c_p+c_s)
while len(queue)>0:
v=queue.pop()
if is_root[v]:
dp_p=[False]*(2*(size[v]+ans_size)+1)
for i in range(2*size[v]+1):
for c_v in [0,1]:
for c_p in [0,1]:
for j in range(2*ans_size+1):
dp_p[i+j]|=(dp[v][i]>>(4*c_v+3*c_p))&ans[j]&1
ans_size+=size[v]
for i in range(2*ans_size+1):
ans[i]=dp_p[i]
else:
dp_p=[0 for _ in range(2*(size[v]+size[p[v]])+1)]
for i in range(2*size[v]+1):
for c_v in [0,1]:
for c_p in [0,1]:
for c_pp in [0,1]:
for j in range(2*size[p[v]]+1):
if is_root_next[v]:
dp_p[i+j]|=((dp[v][i]>>(5*c_v+2*c_p))&(dp[p[v]][j]>>(4*c_p+2*c_pp+c_v))&1)<<(4*c_p+2*c_pp+c_v)
else:
for c_s in [0,1]:
dp_p[i+j]|=((dp[v][i]>>(4*c_v+2*c_p+c_s))&(dp[p[v]][j]>>(4*c_p+2*c_pp+c_s))&1)<<(4*c_p+2*c_pp+c_s)
size[p[v]]+=size[v]
for i in range(2*size[p[v]]+1):
dp[p[v]][i]=dp_p[i]
indeg[p[v]]-=1
if indeg[p[v]]==0:
queue.appendleft(p[v])
print("Yes" if ans[k] else "No")
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0