結果
問題 | No.2699 Simple Math (Returned) |
ユーザー | Misuki |
提出日時 | 2024-03-29 21:13:40 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 106 ms / 2,000 ms |
コード長 | 5,526 bytes |
コンパイル時間 | 2,237 ms |
コンパイル使用メモリ | 197,088 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-09-30 15:29:51 |
合計ジャッジ時間 | 4,898 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 45 ms
5,248 KB |
testcase_02 | AC | 89 ms
5,248 KB |
testcase_03 | AC | 45 ms
5,248 KB |
testcase_04 | AC | 106 ms
5,248 KB |
testcase_05 | AC | 78 ms
5,248 KB |
testcase_06 | AC | 69 ms
5,248 KB |
testcase_07 | AC | 94 ms
6,816 KB |
testcase_08 | AC | 95 ms
6,816 KB |
testcase_09 | AC | 90 ms
6,820 KB |
testcase_10 | AC | 92 ms
6,820 KB |
testcase_11 | AC | 91 ms
6,820 KB |
ソースコード
#pragma GCC optimize("O2") #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <variant> #if __cplusplus >= 202002L #include <bit> #include <compare> #include <concepts> #include <numbers> #include <ranges> #include <span> #else #define ssize(v) (int)(v).size() #define popcount(x) __builtin_popcountll(x) constexpr int bit_width(const unsigned int x) { return x == 0 ? 0 : ((sizeof(unsigned int) * CHAR_BIT) - __builtin_clz(x)); } constexpr int bit_width(const unsigned long long x) { return x == 0 ? 0 : ((sizeof(unsigned long long) * CHAR_BIT) - __builtin_clzll(x)); } constexpr int countr_zero(const unsigned int x) { return x == 0 ? sizeof(unsigned int) * CHAR_BIT : __builtin_ctz(x); } constexpr int countr_zero(const unsigned long long x) { return x == 0 ? sizeof(unsigned long long) * CHAR_BIT : __builtin_ctzll(x); } constexpr unsigned int bit_ceil(const unsigned int x) { return x == 0 ? 1 : (popcount(x) == 1 ? x : (1u << bit_width(x))); } constexpr unsigned long long bit_ceil(const unsigned long long x) { return x == 0 ? 1 : (popcount(x) == 1 ? x : (1ull << bit_width(x))); } #endif //#define int ll #define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1) #define INT128_MIN (-INT128_MAX - 1) #define clock chrono::steady_clock::now().time_since_epoch().count() #ifdef DEBUG #define dbg(x) cout << (#x) << " = " << x << '\n' #else #define dbg(x) #endif using namespace std; using ll = long long; using ull = unsigned long long; using ldb = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; //#define double ldb template<class T> ostream& operator<<(ostream& os, const pair<T, T> pr) { return os << pr.first << ' ' << pr.second; } template<class T, size_t N> ostream& operator<<(ostream& os, const array<T, N> &arr) { for(const T &X : arr) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<T> &vec) { for(const T &X : vec) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const set<T> &s) { for(const T &x : s) os << x << ' '; return os; } //reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10 //note: mod should be a prime less than 2^30. template<uint32_t mod> struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 res = 1, base = mod; for(i32 i = 0; i < 31; i++) res *= base, base *= base; return -res; } static constexpr u32 get_mod() { return mod; } static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod static constexpr u32 r = get_r(); //-P^{-1} % 2^32 u32 a; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * r) * mod) >> 32; } static u32 transform(const u64 &b) { return reduce(u64(b) * n2); } MontgomeryModInt() : a(0) {} MontgomeryModInt(const int64_t &b) : a(transform(b % mod + mod)) {} mint pow(u64 k) const { mint res(1), base(*this); while(k) { if (k & 1) res *= base; base *= base, k >>= 1; } return res; } mint inverse() const { return (*this).pow(mod - 2); } u32 get() const { u32 res = reduce(a); return res >= mod ? res - mod : res; } mint& operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint& operator/=(const mint &b) { a = reduce(u64(a) * b.inverse().a); return *this; } mint operator-() { return mint() - mint(*this); } bool operator==(mint b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(mint b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } friend mint operator+(mint a, mint b) { return a += b; } friend mint operator-(mint a, mint b) { return a -= b; } friend mint operator*(mint a, mint b) { return a *= b; } friend mint operator/(mint a, mint b) { return a /= b; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { int64_t val; is >> val; b = mint(val); return is; } }; using mint = MontgomeryModInt<998244353>; signed main() { ios::sync_with_stdio(false), cin.tie(NULL); int t; cin >> t; while(t--) { int n, m; cin >> n >> m; int d = n % (2 * m); int i = max(d - m, 0), j = min(m, d); cout << (mint(10).pow(j) - mint(10).pow(i)) << '\n'; } return 0; }