結果
問題 | No.2699 Simple Math (Returned) |
ユーザー |
![]() |
提出日時 | 2024-03-29 21:31:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 249 ms / 2,000 ms |
コード長 | 3,534 bytes |
コンパイル時間 | 1,312 ms |
コンパイル使用メモリ | 125,356 KB |
最終ジャッジ日時 | 2025-02-20 14:48:04 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 11 |
ソースコード
#include <iostream>#include <vector>#include <algorithm>#include <array>#include <iterator>#include <string>#include <cctype>#include <cstring>#include <cstdlib>#include <cassert>#include <cmath>#include <ctime>#include <iomanip>#include <numeric>#include <stack>#include <queue>#include <map>#include <unordered_map>#include <set>#include <unordered_set>#include <bitset>#include <random>#include <utility>#include <functional>using namespace std;template<int m> struct modint{private:unsigned int value;static constexpr int mod() {return m;}public:constexpr modint(const long long x = 0) noexcept{long long y = x;if(y < 0 || y >= mod()){y %= mod();if(y < 0) y += mod();}value = (unsigned int)y;}static constexpr int get_mod() noexcept {return m;}static constexpr int primitive_root() noexcept{assert(m == 998244353);return 3;}constexpr unsigned int val() noexcept {return value;}constexpr modint &operator+=(const modint &other) noexcept{value += other.value;if(value >= mod()) value -= mod();return *this;}constexpr modint &operator-=(const modint &other) noexcept{unsigned int x = value;if(x < other.value) x += mod();x -= other.value;value = x;return *this;}constexpr modint &operator*=(const modint &other) noexcept{unsigned long long x = value;x *= other.value;value = (unsigned int) (x % mod());return *this;}constexpr modint &operator/=(const modint &other) noexcept{return *this *= other.inverse();}constexpr modint inverse() const noexcept{assert(value);long long a = value,b = mod(),x = 1,y = 0;while(b){long long q = a/b;a -= q*b; swap(a,b);x -= q*y; swap(x,y);}return modint(x);}constexpr modint power(long long N) const noexcept{assert(N >= 0);modint p = *this,ret = 1;while(N){if(N & 1) ret *= p;p *= p;N >>= 1;}return ret;}constexpr modint operator+() {return *this;}constexpr modint operator-() {return modint() - *this;}constexpr modint &operator++(int) noexcept {return *this += 1;}constexpr modint &operator--(int) noexcept {return *this -= 1;}friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs) += rhs;}friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs) -= rhs;}friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs) *= rhs;}friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs) /= rhs;}friend ostream &operator<<(ostream &os,const modint &x) {return os << x.value;}};using mint = modint<998244353>;/* using mint = modint<1000000007>; *///10 ^ N - 1 = q * (10 ^ M + 1) + r;void Main(){//x keta x + M keta = N//x = N - Mint N,M;cin >> N >> M;if(N <= M){cout << mint(10).power(N) - 1 << "\n";}else{int K = N - M;const mint T = mint(10).power(M);mint L = (T - 1) * T;//K / (2M) := Q//K % (2M) := R//L + L * 10^2M + L * 10 ^ 4M + ... + L * 10^2M(Q - 1) = L * (1 - 10 ^ 2MQ) / (1 - 10 ^ 2M)int Q = K / (2 * M),R = K % (2 * M);mint q = L * (1 - T.power(2 * Q)) / (1 - T * T);if(R <= M){q *= mint(10).power(R);q += mint(10).power(R) - 1;}else{q *= T;q += T - 1;q *= mint(10).power(R - M);}mint ans = (mint(10).power(N) - 1) - q * (T + 1);cout << ans << "\n";}}int main(){ios::sync_with_stdio(false);cin.tie(nullptr);int tt = 1;cin >> tt;while(tt--) Main();}