結果
問題 | No.2705 L to R Graph (Another ver.) |
ユーザー | 👑 hos.lyric |
提出日時 | 2024-03-29 22:13:20 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,083 bytes |
コンパイル時間 | 1,244 ms |
コンパイル使用メモリ | 118,304 KB |
実行使用メモリ | 11,264 KB |
最終ジャッジ日時 | 2024-09-30 16:06:22 |
合計ジャッジ時間 | 5,814 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
11,264 KB |
testcase_01 | AC | 6 ms
6,016 KB |
testcase_02 | AC | 5 ms
6,016 KB |
testcase_03 | AC | 6 ms
5,888 KB |
testcase_04 | AC | 6 ms
5,888 KB |
testcase_05 | AC | 6 ms
5,888 KB |
testcase_06 | AC | 5 ms
5,888 KB |
testcase_07 | AC | 6 ms
5,888 KB |
testcase_08 | TLE | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// // Barrett struct ModInt { static unsigned M; static unsigned long long NEG_INV_M; static void setM(unsigned m) { M = m; NEG_INV_M = -1ULL / M; } unsigned x; ModInt() : x(0U) {} ModInt(unsigned x_) : x(x_ % M) {} ModInt(unsigned long long x_) : x(x_ % M) {} ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { const unsigned long long y = static_cast<unsigned long long>(x) * a.x; const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64); const unsigned long long r = y - M * q; x = r - M * (r >= M); return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; unsigned ModInt::M; unsigned long long ModInt::NEG_INV_M; // !!!Use ModInt::setM!!! //////////////////////////////////////////////////////////////////////////////// using Mint = ModInt; constexpr int LIM_INV = 200'010; Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV]; void prepare() { inv[1] = 1; for (int i = 2; i < LIM_INV; ++i) { inv[i] = -((Mint::M / i) * inv[Mint::M % i]); } fac[0] = invFac[0] = 1; for (int i = 1; i < LIM_INV; ++i) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(Int n, Int k) { if (n < 0) { if (k >= 0) { return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k); } else if (n - k >= 0) { return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k); } else { return 0; } } else { if (0 <= k && k <= n) { assert(n < LIM_INV); return fac[n] * invFac[k] * invFac[n - k]; } else { return 0; } } } // N^N * N(N+1)/2 * N(N-1) // F, [L, R], S != T Mint slow(int N) { Mint ans = 0; for (int L = 1; L <= N; ++L) for (int R = L; R <= N; ++R) { vector<int> can(N + 1, 0); for (int x = 1; L * x <= N; ++x) { for (int d = L * x; d <= R * x && d <= N; ++d) can[d] = 1; } Mint here = 0; // direct for (int d = 1; d <= N - 1; ++d) if (can[d]) { here += fac[N] * invFac[N - (d + 1)] * Mint(N).pow(N - d); } // cycle for (int a = 0; a <= N - 1; ++a) for (int b = 0; a + b <= N - 1; ++b) for (int c = 1; a + b + c <= N; ++c) { const int d = a + b, m = b + c; if (d == 0) continue; if (can[d]) continue; if (L < R || d % __gcd(L, m) == 0) { here += fac[N] * invFac[N - (a + b + c)] * Mint(N).pow(N - (a + b + c)); } } ans += here; } return ans; } Mint slow2(int N) { vector<Mint> path(N, 0); for (int L = 1; L <= N; ++L) for (int R = L; R <= N; ++R) { vector<int> can(N, 0); for (int x = 0; L * x <= N; ++x) { for (int d = L * x; d <= min(R * x, N - 1); ++d) { can[d] = 1; } } for (int d = 0; d <= N - 1; ++d) if (can[d]) { path[d] += 1; } } cerr<<"N = "<<N<<": path = "<<path<<endl; for (int d = 1; d <= N - 1; ++d) path[d] += path[d - 1]; Mint ans = 0; // fix rho for (int h = 0; h <= N - 1; ++h) for (int m = 1; h + m <= N; ++m) { const Mint way = fac[N] * invFac[N - (h + m)] * Mint(N).pow(N - (h + m)); // before cycle if (h) ans += way * path[h - 1]; // cycle for (int L = 1; L <= N; ++L) ans += way * Mint(m / __gcd(L, m)); ans += way * Mint((Int)N * (N - 1) / 2) * Mint(m); } // S = T ans -= Mint(N).pow(N) * Mint((Int)N * (N + 1) / 2) * N; return ans; } Mint fast(int N) { vector<Mint> path(N, 0); // R x < d < L (x+1) for (int d = 0; d <= N - 1; ++d) { path[d] = Mint((Int)N * (N + 1) / 2); if (d == 0) continue; for (int x = 0; x <= N; ++x) { const int L = d / (x + 1) + 1; const int R = x ? ((d + x - 1) / x - 1) : N; if (L <= R) { path[d] -= (Int)(R - L + 1) * (R - L + 2) / 2; } } } cerr<<"N = "<<N<<": path = "<<path<<endl; for (int d = 1; d <= N - 1; ++d) path[d] += path[d - 1]; vector<Mint> ws(N + 1); ws[N] = 1; for (int n = N; --n >= 0; ) ws[n] = ws[n + 1] * N; for (int n = 0; n <= N; ++n) ws[n] *= fac[N] * invFac[N - n]; ws[0] = 0; for (int n = 1; n <= N; ++n) ws[n] += ws[n - 1]; auto get = [&](int nL, int nR) -> Mint { return (nL <= nR) ? (ws[nR] - ws[nL - 1]) : 0; }; Mint ans = 0; // before cycle for (int h = 1; h <= N - 1; ++h) { ans += get(h + 1, N) * path[h - 1]; } for (int m = 1; m <= N; ++m) { const Mint w = get(m, N); Int sum = 0; for (int L = 1; L <= N; ++L) sum += m / __gcd(L, m); ans += w * sum; ans += w * Mint((Int)N * (N - 1) / 2) * Mint(m); } // S = T ans -= Mint(N).pow(N) * Mint((Int)N * (N + 1) / 2) * N; return ans; } int main() { int N, P; for (; ~scanf("%d%d", &N, &P); ) { Mint::setM(P); prepare(); const Mint ans = fast(N); printf("%u\n", ans.x); #ifdef LOCAL const Mint slw=slow(N); const Mint slw2=slow2(N); cerr<<"slw = "<<slw<<endl; cerr<<"slw2 = "<<slw2<<endl; #endif } return 0; }