結果
問題 | No.2705 L to R Graph (Another ver.) |
ユーザー |
👑 |
提出日時 | 2024-03-29 22:27:38 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,880 ms / 3,000 ms |
コード長 | 9,382 bytes |
コンパイル時間 | 1,683 ms |
コンパイル使用メモリ | 127,076 KB |
実行使用メモリ | 7,424 KB |
最終ジャッジ日時 | 2024-09-30 16:21:06 |
合計ジャッジ時間 | 103,616 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 50 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }#define COLOR(s) ("\x1b[" s "m")////////////////////////////////////////////////////////////////////////////////// Barrettstruct ModInt {static unsigned M;static unsigned long long NEG_INV_M;static void setM(unsigned m) { M = m; NEG_INV_M = -1ULL / M; }unsigned x;ModInt() : x(0U) {}ModInt(unsigned x_) : x(x_ % M) {}ModInt(unsigned long long x_) : x(x_ % M) {}ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) {const unsigned long long y = static_cast<unsigned long long>(x) * a.x;const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);const unsigned long long r = y - M * q;x = r - M * (r >= M);return *this;}ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};unsigned ModInt::M;unsigned long long ModInt::NEG_INV_M;// !!!Use ModInt::setM!!!////////////////////////////////////////////////////////////////////////////////using Mint = ModInt;constexpr int LIM_INV = 200'010;Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];void prepare() {inv[1] = 1;for (int i = 2; i < LIM_INV; ++i) {inv[i] = -((Mint::M / i) * inv[Mint::M % i]);}fac[0] = invFac[0] = 1;for (int i = 1; i < LIM_INV; ++i) {fac[i] = fac[i - 1] * i;invFac[i] = invFac[i - 1] * inv[i];}}Mint binom(Int n, Int k) {if (n < 0) {if (k >= 0) {return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);} else if (n - k >= 0) {return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);} else {return 0;}} else {if (0 <= k && k <= n) {assert(n < LIM_INV);return fac[n] * invFac[k] * invFac[n - k];} else {return 0;}}}// N^N * N(N+1)/2 * N(N-1)// F, [L, R], S != TMint slow(int N) {Mint ans = 0;for (int L = 1; L <= N; ++L) for (int R = L; R <= N; ++R) {vector<int> can(N + 1, 0);for (int x = 1; L * x <= N; ++x) {for (int d = L * x; d <= R * x && d <= N; ++d) can[d] = 1;}Mint here = 0;// directfor (int d = 1; d <= N - 1; ++d) if (can[d]) {here += fac[N] * invFac[N - (d + 1)] * Mint(N).pow(N - d);}// cyclefor (int a = 0; a <= N - 1; ++a) for (int b = 0; a + b <= N - 1; ++b) for (int c = 1; a + b + c <= N; ++c) {const int d = a + b, m = b + c;if (d == 0) continue;if (can[d]) continue;if (L < R || d % __gcd(L, m) == 0) {here += fac[N] * invFac[N - (a + b + c)] * Mint(N).pow(N - (a + b + c));}}ans += here;}return ans;}Mint slow2(int N) {vector<Mint> path(N, 0);for (int L = 1; L <= N; ++L) for (int R = L; R <= N; ++R) {vector<int> can(N, 0);for (int x = 0; L * x <= N; ++x) {for (int d = L * x; d <= min(R * x, N - 1); ++d) {can[d] = 1;}}for (int d = 0; d <= N - 1; ++d) if (can[d]) {path[d] += 1;}}cerr<<"N = "<<N<<": path = "<<path<<endl;for (int d = 1; d <= N - 1; ++d) path[d] += path[d - 1];Mint ans = 0;// fix rhofor (int h = 0; h <= N - 1; ++h) for (int m = 1; h + m <= N; ++m) {const Mint way = fac[N] * invFac[N - (h + m)] * Mint(N).pow(N - (h + m));// before cycleif (h) ans += way * path[h - 1];// cyclefor (int L = 1; L <= N; ++L) ans += way * Mint(m / __gcd(L, m));ans += way * Mint((Int)N * (N - 1) / 2) * Mint(m);}// S = Tans -= Mint(N).pow(N) * Mint((Int)N * (N + 1) / 2) * N;return ans;}Mint fast(int N) {vector<Mint> path(N, 0);// R x < d < L (x+1)for (int d = 0; d <= N - 1; ++d) {path[d] = Mint((Int)N * (N + 1) / 2);if (d == 0) continue;/*for (int x = 0; x <= N; ++x) {const int L = d / (x + 1) + 1;const int R = x ? ((d + x - 1) / x - 1) : N;if (L <= R) {path[d] -= (Int)(R - L + 1) * (R - L + 2) / 2;}}*/vector<int> xs;xs.push_back(0);for (int a = 0, b; a < d; a = b) {const int k = d / (a + 1);b = d / k;xs.push_back(b - 1);}const int mid = xs.size();for (int a = 0, b; a < d - 1; a = b) {const int k = (d - 1) / (a + 1) + 1;b = (d - 1) / (k - 1);xs.push_back(b);}xs.push_back(N);inplace_merge(xs.begin(), xs.begin() + mid, xs.end());// cerr<<"d = "<<d<<": xs = "<<xs<<endl;for (int i = 0; i < (int)xs.size(); ++i) if (i == 0 || xs[i - 1] < xs[i]) {// (xs[i - 1], xs[i]]const int x = xs[i];const int L = d / (x + 1) + 1;const int R = x ? ((d + x - 1) / x - 1) : N;if (L <= R) {path[d] -= (i ? Mint(xs[i] - xs[i - 1]) : 1) * Mint((Int)(R - L + 1) * (R - L + 2) / 2);}}}// cerr<<"N = "<<N<<": path = "<<path<<endl;for (int d = 1; d <= N - 1; ++d) path[d] += path[d - 1];vector<Mint> ws(N + 1);ws[N] = 1;for (int n = N; --n >= 0; ) ws[n] = ws[n + 1] * N;for (int n = 0; n <= N; ++n) ws[n] *= fac[N] * invFac[N - n];ws[0] = 0;for (int n = 1; n <= N; ++n) ws[n] += ws[n - 1];auto get = [&](int nL, int nR) -> Mint {return (nL <= nR) ? (ws[nR] - ws[nL - 1]) : 0;};Mint ans = 0;// before cyclefor (int h = 1; h <= N - 1; ++h) {ans += get(h + 1, N) * path[h - 1];}// cyclevector<Mint> fs(N + 1, 0), gs(N + 1, 1);for (int m = 1; m <= N; ++m) {const Mint w = get(m, N);/*Int sum = 0;for (int L = 1; L <= N; ++L) sum += m / __gcd(L, m);ans += w * sum;*/fs[m] += w * Mint(m);ans += w * Mint((Int)N * (N - 1) / 2) * Mint(m);}// gcd convfor (int i = 1; i <= N; ++i) for (int j = 2 * i; j <= N; j += i) fs[i] += fs[j];for (int i = 1; i <= N; ++i) for (int j = 2 * i; j <= N; j += i) gs[i] += gs[j];for (int i = 1; i <= N; ++i) fs[i] *= gs[i];for (int i = N; i >= 1; --i) for (int j = 2 * i; j <= N; j += i) fs[i] -= fs[j];for (int i = 1; i <= N; ++i) ans += fs[i] * inv[i];// S = Tans -= Mint(N).pow(N) * Mint((Int)N * (N + 1) / 2) * N;return ans;}int main() {int N, P;for (; ~scanf("%d%d", &N, &P); ) {Mint::setM(P);prepare();const Mint ans = fast(N);printf("%u\n", ans.x);#ifdef LOCAL/*const Mint slw=slow(N);const Mint slw2=slow2(N);cerr<<"slw = "<<slw<<endl;cerr<<"slw2 = "<<slw2<<endl;//*/#endif}return 0;}